Skip to main content
Log in

Effects of NaBF4 + NaF on the Tensile and Impact Properties of Al-Si-Mg-Fe Alloys

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

NaBF4 + NaF were found to play three roles, i.e., Fe-eliminator, grain refiner, and eutectic modifier, in treating A356 alloy with a high Fe content. The joint effects led to significant improvement in both tensile and impact properties of thus treated alloy. The multiple reactions between the NaBF4 + NaF and Al-Si-Mg-Fe system are suggested to form Fe2B, AlB2, and Na in the melt, as per thermodynamic analysis. The three are responsible for Fe removal, grain refinement, and eutectic modification, respectively. When NaBF4 and NaF are mixed in weight ratio of 1:1, an optimum addition rate is in the range between 1.0 and 2.0 wt pct for treating AlSi7Mg0.3Fe0.65 alloy, based on the results of tensile and impact tests. Excessive addition of the salt may deteriorate the mechanical properties of the alloy, basically owing to overmodification of Si and contamination of salt inclusions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. J. E. Gruzleski and B. M. Closset: The Treatment of Liquid Aluminum-Silicon Alloys, American Foundrymen’s Society, Inc., Des Plaines, 1990, pp. 6–33.

    Google Scholar 

  2. J.R. Davis: Aluminum and Aluminum Alloys, ASM International, Materials Park, 1993, pp. 1–8.

  3. Y. Birol: Mater. Sci. Eng. A, 2013, vol. 559, pp. 394–400.

    Article  Google Scholar 

  4. G. Gustafsson, T. Thorvaldsson, and G.L. Dunlop: Metall. Trans. A, 1986, vol. 17, pp. 45–52.

    Article  Google Scholar 

  5. J.W. Gao, D. Shu, J. Wang, and B.D. Sun: Scripta Mater 2007, vol. 57, pp. 197–200.

    Article  Google Scholar 

  6. L. Ceschini, I. Boromei, A. Morri, S. Seifeddine, and I.L. Svensson: Mater. Des. 2012, vol. 36, pp. 522–28.

    Article  Google Scholar 

  7. S. Lee, B. Kim, and S. Lee: Mater. Trans., 2011, vol. 52, pp. 1053–62.

    Article  Google Scholar 

  8. S.G. Shabestari: Mater. Sci. Eng. A, 2004, vol. 383, pp. 289–98.

    Article  Google Scholar 

  9. A.M. Samuel, F.H. Samuel, and H.W. Doty: J. Mater. Sci., 1996, vol. 31, pp. 5529–39.

    Article  Google Scholar 

  10. Y. Zhang, J. Jie, Y. Gao, Y. Lu, and T. Li: Intermetallics, 2013, vol. 42, pp. 120–25.

    Article  Google Scholar 

  11. P.E. Croseley and L.F. Mondolfo: AFS Trans., 1966, vol. 74, pp. 53–64.

    Google Scholar 

  12. G.K. Sigworth: Int. J. Met., 2008, vol. 2, pp. 19–40.

    Google Scholar 

  13. A. Pacz: US Patent No. 1387900, 1921.

  14. L.F. Mondolfo: J. Aust. Inst. Met., 1965, vol. 10, pp. 169–77.

    Google Scholar 

  15. S.Z. Lu and A. Hellawell: Metall. Trans. A, 1987, vol. 18A, pp. 1721–33.

    Article  Google Scholar 

  16. M.G. Day and A. Hellawell: Proc. R. Soc. A, 1968, vol. 305, pp. 479–91.

    Article  Google Scholar 

  17. M. Timpel, N. Wanderka, R. Schlesiger, T. Yamamoto, N. Lazarev, D. Isheim, G. Schmitz, S. Matsumura, and J. Banhart: Acta Mater., 2012, vol. 60, pp. 3920–28.

    Article  Google Scholar 

  18. B.S. Murty, S.A. Kori, and M. Chakraborty: Int. Mater. Rev. 2002, vol. 47, pp. 3–29.

    Article  Google Scholar 

  19. Y. Birol: J. Alloys Compd., 2012, vol. 513, pp. 150–53.

    Article  Google Scholar 

  20. Z. Chen, T. Wang, L. Gao, H. Fu, and T. Li: Mater. Sci. Eng. A, 2012, vol. 553, pp. 32–36.

    Article  Google Scholar 

  21. P. Li, S. Liu, L. Zhang, and X. Liu: Mater. Des., 2013, vol. 47, pp. 522–28.

    Article  Google Scholar 

  22. T. Wang, H. Fu, Z. Chen, J. Xu, J. Zhu, F. Cao, and T. Li: J. Alloys Compd. 2012, vol. 511, pp. 45–49.

    Article  Google Scholar 

  23. H. Liao and G. Sun: Scripta Mater., 2003, vol. 48, pp. 1035–39.

    Article  Google Scholar 

  24. A.M. Samuel, H.W. Doty, S. Valtierra, and F.H. Samuel: Mater. Des., 2014, vol. 56, pp. 264–73.

    Article  Google Scholar 

  25. E. Samuel, B. Golbahar, A.M. Samuel, H.W. Doty, S. Valtierra, and F.H. Samuel: Mater. Des. 2014, vol. 56, pp. 468–79.

    Article  Google Scholar 

  26. D.M. Stefanescu. ASM Handbook Volume 15: Casting, ASM International, The Materials Information Co., Metals Park, 1988.

    Google Scholar 

  27. T. Wang, Z. Chen, H. Fu, J. Xu, Y. Fu, and T. Li: Scripta Mater., 2011, vol. 64, pp. 1121–24.

    Article  Google Scholar 

  28. T.M. Yue, H.U. Ha, and N.J. Musson: J. Mater. Sci., 1995, vol. 30, pp. 2277–83.

    Article  Google Scholar 

  29. M. Binnewies and E. Milke: Thermochemical Data of Elements and Compounds, Wiley-VCH Verlag GmbH, Weinheim, 2008.

    Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the supports of the National Natural Science Foundation of China (Nos. 51274054, U1332115, 51271042, 51375070), the Keygrant Project of Chinese Ministry of Education (No. 313011), the Science and Technology Planning Project of Dalian (No. 2013A16GX110), the China Postdoctoral Science Foundation, and the Fundamental Research Funds for the Central Universities. In-depth comments and valuable suggestions from the reviewers are appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tongmin Wang.

Additional information

Manuscript submitted September 23, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Z., Wang, T., Zhao, Y. et al. Effects of NaBF4 + NaF on the Tensile and Impact Properties of Al-Si-Mg-Fe Alloys. Metall Mater Trans A 46, 2063–2072 (2015). https://doi.org/10.1007/s11661-015-2759-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-015-2759-x

Keywords

Navigation