Skip to main content
Log in

Microstructure and Creep Behavior of Fe-27Al-1Nb Alloys with Added Carbon

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The effect of Nb and C additions on the phase composition, microstructure, and creep resistance of Fe3Al-type alloys is investigated. Two alloys, which contained (at. pct) (i) 27.6 Al, 1.15 Nb and 0.19 C (Fe balance) and (ii) 27.1 Al, 1.11 Nb, and 0.76 C (Fe balance), were studied in a temperature range from 873 K to 1073 K (600 °C to 800 °C). The carbide in both alloys was identified as Nb6C5. The creep data can be rationalized by introducing a threshold stress, below which, the creep rate is negligible. The threshold stress and an effective stress exponent were found simultaneously by a numerical method. Using the obtained values of the threshold stress, the activation energy of creep was determined to be 328 kJ/mol. The effective stress exponent varied from 2.0 to 3.1. A breakdown of power-law behavior was observed at higher stresses. The transition occurred at the normalized creep rate of \( \dot{\varepsilon }/D = 10^{13} \,{\text{m}}^{ - 2} \), which agrees with the rule suggested by Sherby and Burke and the diffusion coefficient D corresponding to the diffusion of Al in Fe-Al.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. N.S. Stoloff: Mater. Sci. Eng. A, 1998, vol. 258, pp. 1-14.

    Article  Google Scholar 

  2. F. Stein, A. Schneider and G. Frommeyer: Intermetallics. 2003, vol. 11, pp. 71-82.

    Article  Google Scholar 

  3. L. Anthony and B. Fultz: Acta Metall. Mater., 1995, vol. 43, pp. 3885-3891.

    Article  Google Scholar 

  4. M. Palm: J. Alloys Compd., 2009, vol. 475, pp. 173-177.

    Article  Google Scholar 

  5. R. Balasubramaniam: J. Alloys Compd., 1997, vol. 253–254, pp. 148-51.

    Article  Google Scholar 

  6. C.G. McKamey, P.J. Maziasz and J.W. Jones: J. Mater. Res., 1992, vol. 7, pp. 2089-2106.

    Article  Google Scholar 

  7. C.G. McKamey, P.J. Maziasz, G.M. Goodwin and T. Zacharia: Mater. Sci. Eng. A, 1994, vol. 174, pp. 59-70.

    Article  Google Scholar 

  8. C.G. McKamey and P.J. Maziasz: Intermetallics, 1998, vol. 6, pp. 303-314.

    Article  Google Scholar 

  9. D.G. Morris, M.A. Muñoz-Morris and C. Baudin: Acta Mater., 2004, vol. 52, pp. 2827-2836.

    Article  Google Scholar 

  10. D.G. Morris, M.A. Muñoz-Morris, L.M. Requejo and C. Baudin: Intermetallics, 2006, vol. 14, pp. 1204-1207.

    Article  Google Scholar 

  11. D.G. Morris, L.M. Requejo and M.A. Muñoz-Morris: Scripta Mater., 2006, vol. 54, pp. 393-397.

    Article  Google Scholar 

  12. D.G. Morris and M.A. Muñoz-Morris: Mater. Sci. Eng. A, 2012, vol. 552, pp. 134-144.

    Article  Google Scholar 

  13. R.G. Baligidad: J. Mater. Sci., 2004, vol. 39, pp. 5599-5602.

    Article  Google Scholar 

  14. R.G. Baligidad: Mat. Sci. Eng. A, 2004, vol. 368, pp. 131-138.

    Article  Google Scholar 

  15. X.Q. Yu and Y.S. Sun: J. Mater. Sci. Lett., 2001, vol. 20, pp. 1221-1223.

    Article  Google Scholar 

  16. Z.H. Zhang, Y.S. Sun and J. Guo: Scripta Metall. Mater., 1995, vol. 33, pp. 2013-2017.

    Article  Google Scholar 

  17. S. Milenkovic and M. Palm: Intermetallics, 2008, vol. 16, 1212-1218.

    Article  Google Scholar 

  18. L. Falat, A. Schneider, G. Sauthoff and G. Frommeyer: Intermetallics, 2005, vol. 13, pp. 1256-62.

    Article  Google Scholar 

  19. F. Dobeš: Key Eng. Mater., 2011, vol. 465, pp. 443-446.

    Article  Google Scholar 

  20. F. Dobeš: Acta Metal. Slovaca, 2010, vol. 16, pp. 223-228.

    Google Scholar 

  21. D. Connetable, J. Lacaze, P. Maugis and B. Sundman: Computer Coupling of Phase Diagrams and Thermochemistry, 2008, vol. 32, pp. 361–370.

    Article  Google Scholar 

  22. F. Stein and M. Palm: Int. J. Mater. Res., 2007, vol. 98, pp. 580-588.

    Article  Google Scholar 

  23. T.R. Bieler and A.K. Mukherjee: Mater. Sci. Eng. A, 1990, vol. 128, pp. 171-182.

    Article  Google Scholar 

  24. F.A. Mohamed, K.T. Park and E.J. Lavernia: Mater. Sci.Eng. A, 1992, vol. 150, pp. 21-35.

    Article  Google Scholar 

  25. R.S. Mishra, T.R. Bieler and A.K. Mukherjee: Acta Metall. Mater., 1995, vol. 43, pp. 877-891.

    Article  Google Scholar 

  26. K.-T. Park, E.J. Lavernia and F.A. Mohamed: Acta Metall. Mater., 1990, vol. 38, pp. 2149-2159.

    Article  Google Scholar 

  27. G. Gonzáles-Doncel and O.D. Sherby: Acta Metall. Mater., 1993, vol. 41, pp. 2797-2805.

    Article  Google Scholar 

  28. J. Čadek, H. Oikawa and V. Šustek: Mater. Sci. Eng. A, 1995, vol. 190. pp. 9-23.

    Article  Google Scholar 

  29. Y. Li and T.G. Langdon: Acta Mater., 1998, vol. 46, pp. 3937-3948.

    Article  Google Scholar 

  30. A. Arieli and A.K. Mukherjee: Creep and Fracture of Engineering Materials and Structures, B. Wilshire and D.R.J. Owen, eds., Pineridge Press, Swansea, 1981, pp. 97–111.

  31. O.D. Sherby and P.M. Burke: Prog. Mater. Sci., 1967, vol. 13, pp. 325-390.

    Google Scholar 

  32. M. Eggersmann and H. Mehrer: Phil. Mag. A, 2000, vol. A80, pp. 1219-1244.

    Article  Google Scholar 

  33. L.N. Larikov, V.V. Geichenko, and V.M. Falchenko: Diffusion Processes in Ordered Alloys, Amerind Publishing Co, New Delhi, 1981.

    Google Scholar 

  34. D.G. Morris, M.A. Muñoz-Morris and L.M. Requejo: Acta Mater., 2006, vol. 54, pp. 2335-2341.

    Article  Google Scholar 

  35. U. Reimann and G. Sauthoff: Intermetallics, 1999, vol. 7, pp. 437-445.

    Article  Google Scholar 

  36. A. Schneider, L. Falat, G. Sauthoff and G. Frommeyer: Intermetallics, 2003, vol. 11, pp. 443-450.

    Article  Google Scholar 

Download references

Acknowledgments

The paper is based on work supported by the Grant Agency of the Czech Republic within the Project 108/12/1452.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ferdinand Dobeš.

Additional information

Manuscript submitted August 5, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dobeš, F., Kratochvíl, P., Pešička, J. et al. Microstructure and Creep Behavior of Fe-27Al-1Nb Alloys with Added Carbon. Metall Mater Trans A 46, 1580–1587 (2015). https://doi.org/10.1007/s11661-015-2756-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-015-2756-0

Keywords

Navigation