Skip to main content
Log in

Hot Ductility Behavior of an 8 Pct Cr Roller Steel

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The hot ductility of an 8 pct Cr roller steel was determined between 1173 K and 1473 K (900 °C and 1200 °C) at strain rates of 0.01 to 10 s−1 through tensile testing. The fracture morphology was observed using scanning electron microscopy, and the microstructure was examined through optical microscopy and transmission electron microscopy. The dependence of the hot ductility behavior on the deformation conditions, grain size, and precipitation was analyzed. The relationship between the reduction in area and the natural logarithm of the Zener–Hollomon parameter (lnZ) was found to be a second-order polynomial. When lnZ was greater than 40 s−1, the hot ductility was poor and fracture was mainly caused by incompatible deformation between the grains. When lnZ was between 32 and 40 s−1, the hot ductility was excellent and the main fracture mechanism was void linking. When lnZ was below 32 s−1, the hot ductility was poor and fracture was mainly caused by grain boundary sliding. A fine grain structure is beneficial for homogenous deformation and dynamic recrystallization, which induces better hot ductility. The effect of M7C3 carbide particles dispersed in the matrix on the hot ductility was small. The grain growth kinetics in the 8 pct Cr steel were obtained between 1373 K and 1473 K (1100 °C and 1200 °C). Finally, optimized preheating and forging procedures for 8 pct Cr steel rollers are provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. S. Iwadoh and T. Mori: ISIJ Int., 1992, vol. 32, pp. 113140.

    Article  Google Scholar 

  2. Q. Wu, D.L. Sun, C.S. Liu, and C.G. Li: Eng. Fail. Anal., 2008, vol. 15, pp. 40110.

    Article  Google Scholar 

  3. K.S. Kim, K.M. Nam, G.J. Kwa, and S.M. Hwang: Int. J. Fatigue, 2004, vol. 26, pp. 683–89.

    Article  Google Scholar 

  4. P. Michaud, D. Delagnes, P. Lamesle, M.H. Mathon, and C. Levaillant: Acta Mater., 2007, vol. 55, pp. 4877–89.

    Article  Google Scholar 

  5. R.L. Bodnar, M. Lin, and S.S. Hansen: Iron Steelmaker, 1993, vol. 20, pp. 65–75.

    Google Scholar 

  6. P. Jiang, W.T. Fu, Z.H. Wang, X.H. Bai, X.C. Zhao, and Z.Q. Lv: J. Mater. Sci., 2011, vol. 46, pp. 4654–59.

    Article  Google Scholar 

  7. X. Zhao, W.P. Li, and D.F. Liu: Heavy Cast. Forg., 2004, vol. 105, pp. 38–42 (in Chinese).

  8. M.Y. Li, Y. Wang, B. Han, W.M. Zhao, and T. Han: Appl. Surf. Sci., 2009, vol. 255, pp. 7574–79.

    Article  Google Scholar 

  9. G.E. Dieter, H.A. Kuhn, and S.L. Semiatin: Handbook of workability and process design, 1st ed., p. 5, ASM International, Ohio, 2003.

    Google Scholar 

  10. Z.H. Wang, Z.Q. Lv, X.H. Bai, Y. Gao, M.G. Qu, and W.T. Fu: J. Mater. Sci., 2012, vol. 47, pp. 7132–37.

    Article  Google Scholar 

  11. J. Guo, B. Liao, L.G. Liu, Q. Li, X.J. Ren, and Q.X. Yang: Mater. Des., 2013, vol. 52, pp. 1027–34.

    Article  Google Scholar 

  12. Z.H. Wang, W.T. Fu, S.H. Sun, Z.Q. Lv, and D.L. Zhao: J. Mater. Sci. Technol., 2010. vol. 26, pp. 798–802.

    Article  Google Scholar 

  13. Z.H. Wang, S.H. Sun, B. Wang, Z.P. Shi, R.H Zhang, and W.T. Fu: Metall. Mater. Trans. A, 2014, vol. 45, pp. 3631–39.

    Article  Google Scholar 

  14. S.P. Tan, Z.H. Wang, S.C. Cheng, Z.D. Liu, J.C. Han, and W.T. Fu: Int. J. Min. Metall. Mater., 2010, vol. 17, pp. 167–72.

    Article  Google Scholar 

  15. M. Jafari, A. Najafizadeh: Mater. Sci. Eng. A, 2009, vol. 501, pp. 16–25.

    Article  Google Scholar 

  16. M. El Wahabi, L. Gavard, F. Montheillet, J.M. Cabrera, and J.M. Prado: Acta Mater., 2005, vol. 53, pp. 4605–12.

    Article  Google Scholar 

  17. K.R. Carpenter, R. Dippenaar, and C.R. Killmore: Metall. Mater. Trans. A, 2009, vol. 40, pp. 573–80.

    Article  Google Scholar 

  18. E. HurtadoDelgado and R.D. Morales: Metall. Mater. Trans. B, 2001, vol. 32B, pp. 919–27.

    Article  Google Scholar 

  19. J. Deng, Y.C. Lin, S.S. Li, J. Chen, and D. Yi: Mater. Des., 2013, vol. 49, pp. 209–19.

    Article  Google Scholar 

  20. R.D. Doherty, D.A. Hughes, F.J. Humphreys, J.J. Jonas, D. JuulJensen, M.E. Kassner, W.E. King, T.R. McNelley, H.J. McQueen, and A.D. Rollett: Mater. Sci. Eng. A, 1997, vol. 238, pp. 219–74.

    Article  Google Scholar 

  21. D. Casellas, J. Caro, S. Molas, J.M. Prado, I. Valls: Acta Mater., 2007, vol. 55, pp. 4277–86.

    Article  Google Scholar 

  22. F.J. Humphreys, M. Hatherly: Recrystallization and related annealing phenomena, 2ed ed., p. 54, Elsevier, Oxford, 2004.

    Google Scholar 

  23. B. Mintz: ISIJ Int. 1999, vol. 39, pp. 83355.

    Article  Google Scholar 

  24. P.A. Beck, J.C. Kremer, L.J. Demer, M.L. Holzworth: Trans. AIME, 1948, vol. 175, pp. 372–379.

    Google Scholar 

  25. C. Zener: Trans. AIME, 1948, vol. 175, pp. 47–58.

    Google Scholar 

Download references

Acknowledgments

The project is supported by the Natural Science Foundation – Steel and Iron Foundation of Hebei Province (E2013203110) and the Foundation for Young Scholars in Yanshan University (14LGA004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wantang Fu.

Additional information

Manuscript submitted August 3, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., Sun, S., Shi, Z. et al. Hot Ductility Behavior of an 8 Pct Cr Roller Steel. Metall Mater Trans A 46, 1767–1775 (2015). https://doi.org/10.1007/s11661-015-2753-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-015-2753-3

Keywords

Navigation