Skip to main content
Log in

M3B2 and M5B3 Formation in Diffusion-Affected Zone During Transient Liquid Phase Bonding Single-Crystal Superalloys

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Precipitates in the diffusion-affected zone (DAZ) during transient liquid phase bonding (TLP) single-crystal superalloys were observed and investigated. Small size and dendritic-shaped precipitates were identified to be M3B2 borides and intergrowth of M3B2/M5B3 borides. The orientation relationships among M3B2, M5B3, and matrix were determined using transmission electron microscope (TEM). Composition characteristics of these borides were also analyzed by TEM energy-dispersive spectrometer. Because this precipitating phenomenon deviates from the traditional parabolic transient liquid phase bonding model which assumed a precipitates free DAZ during TLP bonding, some correlations between the deviation of the isothermal solidification kinetics and these newly observed precipitating behaviors were discussed and rationalized when bonding the interlayer containing the high diffusivity melting point depressant elements and substrates of low solubility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. R. Broomfield: Book-institute of materials, 2000, vol. 736, pp. 741-54.

    Google Scholar 

  2. B. Laux, S. Piegert, and J. Rösler: Metallurgical and Materials Transactions A, 2009, vol. 40A, pp. 138-49.

    Article  Google Scholar 

  3. A. Schnell, A. Stankowski, and E. de Marcos: ASME Turbo Expo-Power for Land, Sea, and Air: American Society of Mechanical Engineers, Montreal 2006. pp. 949-61.

    Google Scholar 

  4. A. Elrefaey, and W. Tillmann: Metallurgical and Materials Transactions A, 2007, vol. 38A, pp. 2956-62.

    Article  Google Scholar 

  5. W.F. Gale, D.A. Butts, T. Zhou, and M. Di Ruscio: Metallurgical and Materials Transactions A, 2002, vol. 33A, pp. 3205-14.

    Article  Google Scholar 

  6. W.F. Gale, Y. Xu, X. Wen, and Z.A.M. Abdo: Metallurgical and Materials Transactions A, 1999, vol. 30A, pp. 2723-26.

    Article  Google Scholar 

  7. T. Khan, M. Kabir, and R. Bulpett: Materials Science and Engineering: A, 2004, vol. 372 (1), pp. 290-95.

    Article  Google Scholar 

  8. D.Q. Sun, X.Y. Gu, and W.H. Liu: Materials Science and Engineering: A, 2005, vol. 391 (1–2), pp. 29-33.

    Google Scholar 

  9. D. Duvall, W. Owczarski, and D. Paulonis: Welding Journal, 1974, vol. 54(4), pp. 203-14.

    Google Scholar 

  10. O. Ojo, N. Richards, and M. Chaturvedi: Science and Technology of Welding & Joining, 2004, vol. 9 (6), pp. 532-40.

    Article  Google Scholar 

  11. F. Jalilian, M. Jahazi, and R.A.L. Drew: Materials Science and Engineering: A, 2006, vol. 423 (1–2), pp. 269-81.

    Article  Google Scholar 

  12. T. Padron, T.I. Khan, and M.J. Kabir: Materials Science and Engineering: A, 2004, vol. 385 (1–2), pp. 220-28.

    Article  Google Scholar 

  13. J. Askew, J. Wilde, and T. Khan: Materials Science and Technology, 1998, vol. 14 (9-10), pp. 920-24.

    Article  Google Scholar 

  14. Y. Zhai, T.H. North, and J. Serrato-Rodrigues: Journal of Materials Science, 1997, vol. 32 (6), pp. 1393-97.

    Article  Google Scholar 

  15. W. MacDonald, and T. Eagar: Annual review of materials science, 1992, vol. 22 (1), pp. 23-46.

    Article  Google Scholar 

  16. W.F. Gale, and D. Butts: Science and Technology of Welding & Joining, 2004, vol. 9 (4), pp. 283-300.

    Article  Google Scholar 

  17. M. Abdelfatah, and O. Ojo: Metallurgical and Materials Transactions A, 2009, vol. 40A, pp. 377-85.

    Article  Google Scholar 

  18. O. Ojo, and M. Abdelfatah: Materials Science and Technology, 2008, vol. 24 (6), pp. 739-43.

    Article  Google Scholar 

  19. K. Tokoro, N. Wikstrom, O. Ojo, and M. Chaturvedi: Materials Science and Engineering: A, 2008, vol. 477 (1), pp. 311-18.

    Article  Google Scholar 

  20. S. Steuer, and R. Singer: Metallurgical and Materials Transactions A, 2013, vol. 44A, pp. 2226-32.

    Article  Google Scholar 

  21. I. Tuah-Poku, M. Dollar, and T.B. Massalski: Metallurgical Transactions A, 1988, vol. 19 (3), pp. 675-86.

    Article  Google Scholar 

  22. O. Idowu, O. Ojo, and M. Chaturvedi: Metallurgical and Materials Transactions A, 2006, vol. 37A, pp. 2787-96.

    Article  Google Scholar 

  23. N. Sheng, J. Liu, T. Jin, X. Sun, and Z. Hu: Philosophical Magazine, 2014, vol. 94 (11), pp. 1219-34.

    Article  Google Scholar 

  24. M. Pouranvari, A. Ekrami, and A. Kokabi: Materials Science and Engineering: A, 2008, vol. 490 (1), pp. 229-34.

    Article  Google Scholar 

  25. N. Sheng, J. Liu, T. Jin, X. Sun, and Z. Hu: Metallurgical and Materials Transactions A, 2013, vol. 44A, pp. 1793-804.

    Article  Google Scholar 

  26. H. Zhang, O. Ojo, and M. Chaturvedi: Scripta Materialia, 2008, vol. 58 (3), pp. 167-70.

    Article  Google Scholar 

  27. S. Pennycook: Advances in Imaging and Electron Physics, 2002, vol. 123, pp.173-206.

    Article  Google Scholar 

  28. A.T. Egbewande, H. Zhang, R. Sidhu, and O. Ojo: Metallurgical and Materials Transactions A, 2009, vol. 40A, pp. 2694-704.

    Article  Google Scholar 

  29. H. Zhang, and O. Ojo: Journal of Materials Science, 2008, vol. 43 (17), pp. 6024-28.

    Article  Google Scholar 

  30. H.-R. Zhang, and O. Ojo: Philosophical Magazine, 2010, vol. 90 (6), pp. 765-82.

    Article  Google Scholar 

  31. X. Hu, Y. Zhu, N. Sheng, and X. Ma: Sci. Rep., 2014, vol. 4, art. no. 7367, DOI:10.1038/srep07367.

  32. K. Portnoi, V. Romashov, V. Chubarov, M.K. Levinskaya, and S. Salibekov: Soviet Powder Metallurgy and Metal Ceramics, 1967, vol. 6 (2), pp. 99-103.

    Article  Google Scholar 

  33. A. Schnell: PhD Thesis, EPFL (École Polytechnique Fédérale de Lausanne), Faculté des Sciences et Techniques de l’ingénieur, 2014, p. 114.

  34. M. Kurban, U. Erb, and K. Aust: Scripta materialia, 2006, vol. 54 (6), pp. 1053-58.

    Article  Google Scholar 

  35. H. Ikawa, Y. Nakao, and T. Isai: Trans. Jpn. Weld. Soc., 1979, vol. 10 (1), pp. 25-29.

    Google Scholar 

  36. H. Beattie: Acta Crystallographica, 1958, vol. 11 (9), pp. 607-09.

    Article  Google Scholar 

Download references

Acknowledgments

Thanks Prof. X.L.Ma and Y.L.Zhu for the supporting of TEM analysis. This work was financially supported by the National Basic Research Program (973 Program) of China under grant No. 2010CB631200 (2010CB631206), the National Natural Science Foundation of China (NSFC) under grant No. 50971124, No. 50904059, No. 51071165 and No. 51204156. The authors are grateful for those supports.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naicheng Sheng.

Additional information

Manuscript submitted April 23, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sheng, N., Hu, X., Liu, J. et al. M3B2 and M5B3 Formation in Diffusion-Affected Zone During Transient Liquid Phase Bonding Single-Crystal Superalloys. Metall Mater Trans A 46, 1670–1677 (2015). https://doi.org/10.1007/s11661-014-2733-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-014-2733-z

Keywords

Navigation