Metallurgical and Materials Transactions A

, Volume 46, Issue 3, pp 1196–1204 | Cite as

Micro-strain Evolution and Toughening Mechanisms in a Trimodal Al-Based Metal Matrix Composite

  • Yuzheng Zhang
  • Troy D. Topping
  • Hanry Yang
  • Enrique J. Lavernia
  • Julie M. Schoenung
  • Steven R. Nutt
Article

Abstract

A trimodal metal matrix composite (MMC) based on AA (Al alloy) 5083 (Al-4.4Mg-0.7Mn-0.15Cr wt pct) was synthesized by cryomilling powders followed by compaction of blended powders and ceramic particles using two successive dual mode dynamic forgings. The microstructure consisted of 66.5 vol pct ultrafine grain (UFG) region, 30 vol pct coarse grain (CG) region and 3.5 vol pct reinforcing boron carbide particles. The microstructure imparted high-tensile yield strength (581 MPa) compared to a conventional AA 5083 (242 MPa) and enhanced ductility compared to 100 pct UFG Al MMC. The deformation behavior of the heterogeneous structure and the effects of CG regions on crack propagation were investigated using in situ scanning electron microscopy micro-tensile tests. The micro-strain evolution measured using digital image correlation showed early plastic strain localization in CG regions. Micro-voids due to the strain mismatch at CG/UFG interfaces were responsible for crack initiation. CG region toughening was realized by plasticity-induced crack closure and zone shielding of disconnected micro-cracks. However, these toughening mechanisms did not effectively suppress its brittle behavior. Further optimization of the CG distribution (spacing and morphology) is required to achieve toughness levels required for structural applications.

References

  1. 1.
    H. Gleiter, “Nanocrystalline materials,” Progess Mater. Sci., vol. 33, pp. 223–315, 1990.CrossRefGoogle Scholar
  2. 2.
    R. Birringer, “Nanocrystalline materials,” Mater. Sci. Eng. A, vol. 117, pp. 33–43, Sep. 1989.CrossRefGoogle Scholar
  3. 3.
    C. Suryanarayana, “Nanocrystalline materials,” Int. Mater. Rev., vol. 40, no. 2, pp. 41–64, Jan. 1995.CrossRefGoogle Scholar
  4. 4.
    K. Lu, “Nanocrystalline metals crystallized from amorphous solids: nanocrystallization, structure, and properties,” Mater. Sci. Eng. R, no. 16, pp. 161–221, 1996.CrossRefGoogle Scholar
  5. 5.
    H. Gleiter, “Nanostructured materials:Basic concepts and microstructure,” Acta Mater., vol. 48, pp. 1–29, 2000.CrossRefGoogle Scholar
  6. 6.
    M. A. Meyers, A. Mishra, and D. J. Benson, “Mechanical properties of nanocrystalline materials,” Prog. Mater. Sci., vol. 51, no. 4, pp. 427–556, May 2006.CrossRefGoogle Scholar
  7. 7.
    R. . Valiev, R. . Islamgaliev, and I. . Alexandrov, “Bulk nanostructured materials from severe plastic deformation,” Prog. Mater. Sci., vol. 45, no. 2, pp. 103–189, Mar. 2000.CrossRefGoogle Scholar
  8. 8.
    V. L. Tellkamp, A. Melmed, and E. J. Lavernia, “Mechanical behavior and microstructure of a thermally stable bulk nanostructured Al alloy,” Metall. Mater. Trans. A, vol. 32A, no. September, pp. 2335–2343, 2001.CrossRefGoogle Scholar
  9. 9.
    D. B. Witkin and E. J. Lavernia, “Synthesis and mechanical behavior of nanostructured materials via cryomilling,” Prog. Mater. Sci., vol. 51, no. 1, pp. 1–60, Jan. 2006.CrossRefGoogle Scholar
  10. 10.
    A. P. Newbery, B. Ahn, T. D. Topping, P. S. Pao, S. R. Nutt and E. J. Lavernia, “Large UFG Al alloy plates from cryomilling”, J. Mater. Proc. Tech., vol. 203 (1-3), pp. 37-45, 2008.CrossRefGoogle Scholar
  11. 11.
    G. Hardenbergstr, “Mechanical formation by mechanical attrition,” Nanostructured Mater., vol. 6, no. 95, pp. 33–42, 1995.Google Scholar
  12. 12.
    R. W. Hayes, P. B. Berbon, and R. S. Mishra, “Microstructure characterization and creep deformation of an Al-10 wt pct Ti-2 wt pct Cu nanocomposite,” Metall. Mater. Trans. A, vol. 35, pp. 3855–3861, 2004.CrossRefGoogle Scholar
  13. 13.
    T.J. Van Daam and C.C. Bampton: US Patent, The Boeing Company, Chicago, IL, 2008.Google Scholar
  14. 14.
    O. Susegg, E. Hellum, A. Olsen and M. Luton, “An electron microscopy study of dispersoids in cryomilled ODS-materials,” Micron Microsc. Acta, vol. 23, no. 1/2, pp. 223–224, 1992.CrossRefGoogle Scholar
  15. 15.
    Y. Li, W. Liu, V. Ortalan, W. F. Li, Z. Zhang, R. Vogt, N. D. Browning, E. J. Lavernia, and J. M. Schoenung, “HRTEM and EELS study of aluminum nitride in nanostructured Al 5083/B4C processed via cryomilling,” Acta Mater., vol. 58, no. 5, pp. 1732–1740, Mar. 2010.CrossRefGoogle Scholar
  16. 16.
    F. Tang, C.P. Liao, B. Ahn, S.R. Nutt and J.M. Schoenung: Powder Metall., 2007, vol. 50(4), pp. 307–12.CrossRefGoogle Scholar
  17. 17.
    K. M. Youssef, R. O. Scattergood, K. Linga Murty, and C. C. Koch, “Ultratough nanocrystalline copper with a narrow grain size distribution,” Appl. Phys. Lett., vol. 85, no. 6, p. 929, 2004.CrossRefGoogle Scholar
  18. 18.
    K. . Kumar, H. Van Swygenhoven, and S. Suresh, “Mechanical behavior of nanocrystalline metals and alloys,” Acta Mater., vol. 51, no. 19, pp. 5743–5774, Nov. 2003.CrossRefGoogle Scholar
  19. 19.
    E. Ma, “Instabilities and ductility of nanocrystalline and ultrafine-grained metals,” Scr. Mater., vol. 49, no. 7, pp. 663–668, Oct. 2003.CrossRefGoogle Scholar
  20. 20.
    P.G. Sanders, J.A. Eastman, and J.R. Weertman: Acta Mater., 1997, vol. 45(10), pp. 4019–25.CrossRefGoogle Scholar
  21. 21.
    Y. Wang, M. Chen, F. Zhou, and E. Ma, “High tensile ductility in a nanostructured metal.,” Nature, vol. 419, no. 6910, pp. 912–5, Oct. 2002.CrossRefGoogle Scholar
  22. 22.
    G. J. Fan, H. Choo, P. K. Liaw, and E. J. Lavernia, “Plastic deformation and fracture of ultrafine-grained Al–Mg alloys with a bimodal grain size distribution,” Acta Mater., vol. 54, no. 7, pp. 1759–1766, Apr. 2006.CrossRefGoogle Scholar
  23. 23.
    Z. Lee, V. Radmilovic, B. Ahn, E. J. Lavernia, and S. R. Nutt, “Tensile deformation and fracture mechanism of bulk bimodal ultrafine-grained Al-Mg alloy,” Metall. Mater. Trans. A, vol. 41, no. 4, pp. 795–801, Oct. 2009.Google Scholar
  24. 24.
    L. Jiang, K. Ma, H. Yang, M. Li, E. J. Lavernia, and J. M. Schoenung, “The microstructural design of trimodal aluminum composites”, JOM, vol. 66, no. 6, pp. 898-908, 2014.CrossRefGoogle Scholar
  25. 25.
    Y. Li, Y. H. Zhao, V. Ortalan, W. Liu, Z. H. Zhang, R. G. Vogt, N. D. Browning, E. J. Lavernia, and J. M. Schoenung, “Investigation of aluminum-based nanocomposites with ultra-high strength,” Mater. Sci. Eng. A, vol. 527, no. 1–2, pp. 305–316, Dec. 2009.CrossRefGoogle Scholar
  26. 26.
    K.M. Reddy, P. Liu, A. Hirata, T. Fujita, and M.W. Chen: Nat. Commun., 2013, vol. 4, p. 2483.CrossRefGoogle Scholar
  27. 27.
    Z. Zhang, T. Topping, Y. Li, R. Vogt, Y. Zhou, C. Haines, J. Paras, D. Kapoor, J. M. Schoenung, and E. J. Lavernia, “Mechanical behavior of ultrafine-grained Al composites reinforced with B4C nanoparticles,” Scr. Mater., vol. 65, no. 8, pp. 652–655, Oct. 2011.CrossRefGoogle Scholar
  28. 28.
    Z. Zhang, S. Dallek, R. Vogt, Y. Li, T. D. Topping, Y. Zhou, J. M. Schoenung, and E. J. Lavernia, “Degassing behavior of nanostructured Al and its composites,” Metall. Mater. Trans. A, vol. 41, no. 2, pp. 532–541, Nov. 2009.Google Scholar
  29. 29.
    J.R. Davis: Properties and Selection: Nonferrous Alloys and Special Purpose Materials, 1990, ASM International, Metals Park, vol. 2.Google Scholar
  30. 30.
    P. W. Trimby, “Orientation mapping of nanostructured materials using transmission Kikuchi diffraction in the scanning electron microscope.,” Ultramicroscopy, vol. 120, pp. 16–24, Sep. 2012.CrossRefGoogle Scholar
  31. 31.
    P. W. Trimby, Y. Cao, Z. Chen, S. Han, K. J. Hemker, J. Lian, X. Liao, P. Rottmann, S. Samudrala, J. Sun, J. T. Wang, J. Wheeler, and J. M. Cairney, “Characterizing deformed ultrafine-grained and nanocrystalline materials using transmission Kikuchi diffraction in a scanning electron microscope,” Acta Mater., vol. 62, pp. 69–80, Jan. 2014.CrossRefGoogle Scholar
  32. 32.
    Y. Zhang, T. D. Topping, E. J. Lavernia, and S. R. Nutt, “Dynamic micro-Strain analysis of ultrafine-grained aluminum magnesium alloy using digital image correlation,” Metall. Mater. Trans. A, vol. 45, no. 1, pp. 47–54, May 2013.Google Scholar
  33. 33.
    Y. J. Li, W. Z. Zhang, and K. Marthinsen, “Precipitation crystallography of plate-shaped Al6(Mn,Fe) dispersoids in AA5182 alloy,” Acta Mater., vol. 60, no. 17, pp. 5963–5974, Oct. 2012.CrossRefGoogle Scholar
  34. 34.
    G. Lucadamo, N. Y. C. Yang, C. S. Marchi, and E. J. Lavernia, “Microstructure characterization in cryomilled Al 5083,” Mater. Sci. Eng. A, vol. 430, no. 1–2, pp. 230–241, Aug. 2006.CrossRefGoogle Scholar
  35. 35.
    T. D. Topping, B. Ahn, Y. Li, S. R. Nutt, and E. J. Lavernia, “Influence of process parameters on the mechanical behavior of an ultrafine-grained Al alloy,” Metall. Mater. Trans. A, vol. 43, no. 2, pp. 505–519, Aug. 2011.Google Scholar
  36. 36.
    J. Ye, B. Q. Han, Z. Lee, B. Ahn, S. R. Nutt, and J. M. Schoenung, “A tri-modal aluminum based composite with super-high strength,” Scr. Mater., vol. 53, no. 5, pp. 481–486, Sep. 2005.CrossRefGoogle Scholar
  37. 37.
    E. O. Hall, “The deformation and ageing of mild steel: III discussion of results,” Proc. Phys. Soc. London, vol. 64, no. 381, pp. 747–753, 1951.CrossRefGoogle Scholar
  38. 38.
    Petch, N.J., “The cleavage Strength of Polycrystals,” Journal of the Iron and Steel Institute, 1953. 174(1): p. 25-28.Google Scholar
  39. 39.
    K. Peng, W. Chen, H. Zhang, and K.-W. Qian, “Features of dynamic strain aging in high strength Al-Zn-Mg-Cu alloy,” Mater. Sci. Eng. A, vol. 234–236, pp. 138–141, Aug. 1997.CrossRefGoogle Scholar
  40. 40.
    F. Tang and J. M. Schoenung, “Strain softening in nanocrystalline or ultrafine-grained metals: A mechanistic explanation,” Mater. Sci. Eng. A, vol. 493, no. 1–2, pp. 101–103, Oct. 2008.CrossRefGoogle Scholar
  41. 41.
    T.D. Topping and E.J. Lavernia: 13th International Conference on Aluminum Alloys, John Wiley & Sons, Inc., Hoboken, NJ, 2012.Google Scholar
  42. 42.
    H. Yang, T.D. Topping, K. Wehage, L. Jiang, E.J. Lavernia, and J.M. Schoenung: Mater. Sci. Eng. A. DOI:10.1016/j.msea.2014.07.079.
  43. 43.
    S. R. Nutt and J. M. Duva, “Failure in Al-SiC composites,” Scr. Metall., vol. 20, no. 7, p. 1055, 1986.CrossRefGoogle Scholar
  44. 44.
    Y.H. Zhao, Y.Z. Guo, Q. Wei, T.D. Topping, A.M. Dangelewicz, Y.T. Zhu, T.G. Langdon, and E.J. Lavernia: Mater. Sci. Eng. A, 2009, vol. 525(1–2), pp. 68–77.CrossRefGoogle Scholar
  45. 45.
    B. Ahn, E.J. Lavernia, and S.R. Nutt, “Dynamic observations of deformation in an ultrafine-grained Al-Mg alloy with bimodal grain structure”, J. Mater. Sci., vol. 43, pp. 7403, 2008.CrossRefGoogle Scholar
  46. 46.
    Z. Lee, D. B. Witkin, V. Radmilovic, E. J. Lavernia, and S. R. Nutt, “Bimodal microstructure and deformation of cryomilled bulk nanocrystalline Al–7.5Mg alloy,” Mater. Sci. Eng. A, vol. 410–411, pp. 462–467, Nov. 2005.CrossRefGoogle Scholar
  47. 47.
    A.P. Newbery, S.R. Nutt, and E.J. Lavernia: J. Miner. Met. Mater. Soc., 2006, vol. 58, pp. 56–61.CrossRefGoogle Scholar
  48. 48.
    D. C. Hofmann, J.-Y. Suh, A. Wiest, G. Duan, M.-L. Lind, M. D. Demetriou, and W. L. Johnson, “Designing metallic glass matrix composites with high toughness and tensile ductility,” Nature, vol. 451, no. 7182, pp. 1085–9, Feb. 2008.CrossRefGoogle Scholar
  49. 49.
    R.W. Hertzberg: Deformation and Fracture Mechanics of Engineering Materials, Chapter 8. Wiley, New York, 1996.Google Scholar
  50. 50.
    P.S. Pao, H.N. Jones, and C.R. Feng: Mater. Res. Soc. Symp. Proc., 2004, vol. 791, p. Q1.8.1.Google Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2014

Authors and Affiliations

  • Yuzheng Zhang
    • 1
  • Troy D. Topping
    • 2
    • 3
  • Hanry Yang
    • 2
  • Enrique J. Lavernia
    • 2
  • Julie M. Schoenung
    • 2
  • Steven R. Nutt
    • 1
  1. 1.Department of Chemical Engineering and Materials ScienceUniversity of Southern CaliforniaLos AngelesUSA
  2. 2.Department of Chemical Engineering and Materials ScienceUniversity of California, DavisDavisUSA
  3. 3.Department of Mechanical EngineeringCalifornia State University, SacramentoSacramentoUSA

Personalised recommendations