Advertisement

Metallurgical and Materials Transactions A

, Volume 46, Issue 3, pp 1024–1029 | Cite as

Detection of an Intermediate Layer Containing a Rhenium-Rich Particle at Grain Boundaries Formed Within Single Crystal Nickel-Based Superalloys

  • KeeHyun Kim
  • Paul Withey
  • W. D. Griffiths
Communication

Abstract

A stray grain exposed on the surface of a Re-containing single crystal Ni-based superalloy turbine blade was examined by high-resolution analytic electron microscopy. An intermediate layer with the size range of 3 to 4 μm, composed of elongated γ′ phase, was clearly detected forming a boundary between a normal matrix grain and a stray grain. Beyond the intermediate layer, the {100} direction of the γ′ phase in the matrix changed slightly, and a stray grain was formed. In each γ′ grain in the intermediate boundary, a Re-rich region of the size range of 100 to 200 nm was detected, suggesting a role for rhenium in the formation of stray grains.

Keywords

Rhenium Turbine Blade Intermediate Layer Solidification Front Normal Matrix 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

The authors thank Dr. A. Mottura at the University of Birmingham for the discussion; Dr. D. Shevchenko at the University of Birmingham for the sample preparation; and especially the EPSRC Centre—LiME, for providing financial support under Grant No. EP/H026177/1.

References

  1. 1.
    R. C. Reed, The superalloys : fundamentals and applications, Cambridge University Press, Cambridge, 2006.CrossRefGoogle Scholar
  2. 2.
    B. Geddes, H. Leon, X. Huang, Superalloys : alloying and performance, ASM International, Materials Park, Ohio, 2010.Google Scholar
  3. 3.
    A. Mottura, M. W. Finnis, R. C. Reed: Acta Mater., 2012, vol. 60, 2866-72.CrossRefGoogle Scholar
  4. 4.
    D. Ma, A. Bührig-Polaczek: Metall. Mater. Trans. B 2009, vol. 40, 738-48.CrossRefGoogle Scholar
  5. 5.
    G. Brewster, H. B. Dong, N. R. Green, N. D’Souza: Metall. Mater. Trans. B, 2008, vol. 39, 87-93.CrossRefGoogle Scholar
  6. 6.
    X. L. Yang, H. B. Dong, W. Wang, P. D. Lee: Mater. Sci. Eng. A, 2004, vol. 386, 129-39.CrossRefGoogle Scholar
  7. 7.
    P. J. Warren, A. Cerezo, G. D. W. Smith: Mater. Sci. Eng. A, 1998, vol. 250, 88-92.CrossRefGoogle Scholar
  8. 8.
    A. F. Giamei, D. L. Anton: Metallurgical Transactions A, 1985, vol. 16, 1997-2005.CrossRefGoogle Scholar
  9. 9.
    A. C. Yeh, S. Tin: Scripta Mater., 2005, vol. 52, 519-24.CrossRefGoogle Scholar
  10. 10.
    M. V. Acharya, G. E. Fuchs: Mater. Sci. Eng. A, 2004, vol. 381, 143-53.CrossRefGoogle Scholar
  11. 11.
    A. Volek, F. Pyczak, R. F. Singer, H. Mughrabi: Scripta Mater., 2005, vol. 52, 141-5.CrossRefGoogle Scholar
  12. 12.
    A. de Bussac, C. A. Gandin: Mater. Sci. Eng. A, 1997, vol. 237, 35-42.CrossRefGoogle Scholar
  13. 13.
    R. E. Napolitano, R. J. Schaefer: J. Mater. Sci., 2000, vol. 35, 1641-59.CrossRefGoogle Scholar
  14. 14.
    J. P. Gu, C. Beckermann, A. F. Giamei: Metall. Mater. Trans. A, 1997, vol. 28, 1533-42.CrossRefGoogle Scholar
  15. 15.
    N. Stanford, A. Djakovic, B. A. Shollock, M. McLean, N. D’Souza, P. A. Jennings: Scripta Mater., 2004, vol. 50, 159-63.CrossRefGoogle Scholar
  16. 16.
    X. Huang, Y. Zhang, Y. Liu, Z. Hu: Metall. Mater. Trans. A, 1997, vol. 28, 2143-7.CrossRefGoogle Scholar
  17. 17.
    K. Kim: M. Watanabe, J. Kawakita, S. Kuroda: Scripta Mater., 2008, vol. 59, 768-71.CrossRefGoogle Scholar
  18. 18.
    K. Kim: Metall. Mater. Trans. A, 2014, vol. 45, 3650-60.CrossRefGoogle Scholar
  19. 19.
    JEOL: Energy Table for EDS Analysis, 2013.Google Scholar
  20. 20.
    Oxford Instruments: AZtecEnergy: The Ultimate EDS System, 2013.Google Scholar
  21. 21.
    Y. Zhou: Scripta Mater., 2011, vol. 65, 281-4.CrossRefGoogle Scholar
  22. 22.
    K. Kim (2014) Metall. Mater. Trans, 45, 4538-48.CrossRefGoogle Scholar
  23. 23.
    K. E. Yoon, R. D. Noebe, D. N. Seidman: Acta Mater., 2007, vol. 55, 1145-57.CrossRefGoogle Scholar
  24. 24.
    T. M. Pollock, S. Tin: J. Propul. Power, 2006, vol. 22, 361-74.CrossRefGoogle Scholar
  25. 25.
    C. M. F. Rae, R. C. Reed: Acta Mater., 2001, vol. 49, 4113-25.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2014

Authors and Affiliations

  1. 1.School of Metallurgy and MaterialsUniversity of BirminghamBirminghamU.K.
  2. 2.Rolls-Royce plcDerbyU.K.

Personalised recommendations