Advertisement

Metallurgical and Materials Transactions A

, Volume 46, Issue 10, pp 4527–4538 | Cite as

Three-Dimensional Characterization and Modeling of Microstructural Weak Links for Spall Damage in FCC Metals

  • Kapil Krishnan
  • Andrew Brown
  • Leda Wayne
  • Johnathan Vo
  • Saul Opie
  • Harn Lim
  • Pedro PeraltaEmail author
  • Sheng-Nian Luo
  • Darrin Byler
  • Kenneth J. McClellan
  • Aaron Koskelo
  • Robert Dickerson
Symposium: Dynamic Behavior of Materials VI

Abstract

Local microstructural weak links for spall damage were investigated using three-dimensional (3-D) characterization in multicrystalline copper samples (grain size ≈ 450 µm) shocked with laser-driven plates at low pressures (2 to 4 GPa). The thickness of samples and flyer plates, approximately 1000 and 500 µm respectively, led to short pressure pulses that allowed isolating microstructure effects on local damage characteristics. Electron Backscattering Diffraction and optical microscopy were used to relate the presence, size, and shape of porosity to local microstructure. The experiments were complemented with 3-D finite element simulations of individual grain boundaries (GBs) that resulted in large damage volumes using crystal plasticity coupled with a void nucleation and growth model. Results from analysis of these damage sites show that the presence of a GB-affected zone, where strain concentration occurs next to a GB, correlates strongly with damage localization at these sites, most likely due to the inability of maintaining strain compatibility across these interfaces, with additional effects due to the inclination of the GB with respect to the shock. Results indicate that strain compatibility plays an important role on intergranular spall damage in metallic materials.

Keywords

Crystal Plasticity Resolve Shear Stress Void Nucleation Damage Site Void Volume Fraction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This work was funded by LANL under the Laboratory Directed Research and Development (LDRD) program, award # 20060021DR, and by the Department of Energy, National Nuclear Security Administration (NNSA), under Grants # DE-FG52-06NA26169, DE-FG52-10NA29653, and DE-NA0002005. Eric Loomis, Pat Dickerson (LANL), Damian Swift (LLNL), David Wright, Karl Weiss, and Dallas Kingsbury (ASU) are thanked for their help during research work. Access to TRIDENT and the Electron Microscopy Lab at LANL, and the Center for High Resolution Electron Microscopy at ASU is gratefully acknowledged.

References

  1. 1.
    Meyers, M.A. and Aimone, C.T.: Prog. Mater. Sci., 1983. 28: p. 1–96.CrossRefGoogle Scholar
  2. 2.
    Meyers, M.A., Dynamic Behavior of Materials. 1994, New York: John Wiley & Sons, Inc.CrossRefGoogle Scholar
  3. 3.
    Minich, R.W., Cazamias, J.U., Kumar, M., and Schwartz, A.J.: Metall. Mater. Trans. A, 2004. 35A: p. 2663–73.CrossRefGoogle Scholar
  4. 4.
    Chen, X., Asay, J.R., Dwivedi, S.K., and Field, D.P.: J. Appl. Phys., 2006. 99: 023528CrossRefGoogle Scholar
  5. 5.
    Wayne, L., Krishnan, K., DiGiacomo, S., Kovvali, N., Peralta, P., Luo, S.-N., Greenfield, S., Byler, D., Paisley, D., McClellan, K.J., Koskelo, A., and Dickerson, R.: Scripta mater., 2010. 63: p. 1065–68.CrossRefGoogle Scholar
  6. 6.
    Peralta, P., DiGiacomo, S., Hashemian, S., Luo, S.-N., Paisley, D.L., Dickerson, R., Loomis, E., Byler, D., McClellan, K.J., and D’Armas, H.: Int. J. Damage Mech., 2009. 18: p. 393-413.CrossRefGoogle Scholar
  7. 7.
    Escobedo, J.P., Dennis-Koller, D., Cerreta, E.K., Patterson, B.M., Bronkhorst, C.A., Hansen, B.L., Tonks, D., and Lebensohn, R.A.: J. Appl. Phys., 2011. 110(3): p. 033513.CrossRefGoogle Scholar
  8. 8.
    Cerreta, E.K., Escobedo, J.P., Perez-Bergquist, A., Koller, D.D., Trujillo, C.P., Gray Iii, G.T., Brandl, C., and Germann, T.C.: Scripta Mater., 2012. 66(9): p. 638–41.CrossRefGoogle Scholar
  9. 9.
    Luo, S.-N., Germann, T.C., Tonks, D.L., and An, Q.: J. Appl. Phys., 2010. 108(9): p. 093526.CrossRefGoogle Scholar
  10. 10.
    Han, W., An, Q., Luo, S., Germann, T., Tonks, D., and Goddard, W.: Phys. Rev. B, 2012. 85(2): 024107CrossRefGoogle Scholar
  11. 11.
    Fensin, S.J., Valone, S.M., Cerreta, E.K., and Gray, G.T.: J. Appl. Phys., 2012. 112(8): p. 083529.CrossRefGoogle Scholar
  12. 12.
    Fensin, S.J., Escobedo-Diaz, J.P., Brandl, C., Cerreta, E.K., Gray Iii, G.T., Germann, T.C., and Valone, S.M.: Acta Mater., 2014. 64(0): p. 113-122.CrossRefGoogle Scholar
  13. 13.
    Sutton, A.P. and Ballufi, R.W., Interfaces in Crystalline Materials. 1995, New York: Oxford University Press.Google Scholar
  14. 14.
    Cochran, S. and Banner, D.: J. Appl. Phys., 1977. 48: 2729CrossRefGoogle Scholar
  15. 15.
    Follansbee, P.S. and Kocks, U.F.: Acta Metall., 1988. 36: p. 81-93.CrossRefGoogle Scholar
  16. 16.
    Steinberg, D.J., Cochran, S.G. and Guinan, M.W.: J. Appl. Phys., 1980. 51(3): p. 1498–504.CrossRefGoogle Scholar
  17. 17.
    Zerilli, F.J. and Armstrong, R.W.: J. Appl. Phys, 1987. 61: p. 1816–25.CrossRefGoogle Scholar
  18. 18.
    Gurson, A.L.: J. Eng. Mater. Technol., 1977. 99: p. 2-15.CrossRefGoogle Scholar
  19. 19.
    Tvergaard, V. and Needleman, A.: Acta Metall., 1984. 32: p. 157–69.CrossRefGoogle Scholar
  20. 20.
    Chaboche, J.L.: J.Appl. Mech., 1988. 55: p. 59-64.CrossRefGoogle Scholar
  21. 21.
    Lemaitre, J. and Desmorat, R., Engineering Damage Mechanics: Ductile, Creep, Fatigue and Brittle Failures. 2005, Berlin: Springer-Verlag.Google Scholar
  22. 22.
    Czarnota, C., Jacques, N., Mercier, S., and Molinari, A.: J. Mech. Phys. Sol., 2008. 56: p. 1624–50.CrossRefGoogle Scholar
  23. 23.
    Wright, T.W. and Ramesh, K.T.: J. Mech. Phys. Sol., 2008. 56: p. 336–59.CrossRefGoogle Scholar
  24. 24.
    Becker, R.: Int. J. Plast., 2004. 20: p. 1983-2006.CrossRefGoogle Scholar
  25. 25.
    Lukyanov, A.A.: Int. J. Plast., 2008. 24:140–67CrossRefGoogle Scholar
  26. 26.
    Luscher, D.J., Bronkhorst, C.A., Alleman, C.N., and Addessio, F.L.: J. Mech. Phys. Sol., 2013. 61(9): p. 1877–94.CrossRefGoogle Scholar
  27. 27.
    Lloyd, J.T., Clayton, J.D., Austin, R.A., and McDowell, D.L.: J. Mech. Phys. Sol., 2014. 69: p. 14-32.CrossRefGoogle Scholar
  28. 28.
    Potirniche, G.P., Horstemeyer, M.F. and Ling, X.W.: Mech. Mater., 2007. 39: p. 941–52.CrossRefGoogle Scholar
  29. 29.
    Vignjevic, R., Djordjevic, N., Campbell, J., and Panov, V.: Int. J. Impact Eng., 2012. 49: p. 61-76.CrossRefGoogle Scholar
  30. 30.
    Clayton, J.D.: J. Mech. Phys. Sol., 2005. 53(2): p. 261-301.CrossRefGoogle Scholar
  31. 31.
    Vogler, T. and Clayton, J.: J. Mech. Phys. Sol., 2008. 56(2): p. 297-335.CrossRefGoogle Scholar
  32. 32.
    Jawad, F.F. and Zikry, M.A.: Int. J. Damage Mech., 2009. 18(4): p. 341–69.CrossRefGoogle Scholar
  33. 33.
    Peralta, P., Llanes, L., Bassani, J., and Laird, C.: Phil. Mag. A, 1994. 70(1): p. 219–32.CrossRefGoogle Scholar
  34. 34.
    Escobedo, J.P., Cerreta, E.K., Dennis-Koller, D., Trujillo, C.P., and Bronkhorst, C.A.: Phil. Mag., 2013. 93(7): p. 833–46.CrossRefGoogle Scholar
  35. 35.
    Kocks, U.F.: Metall. Trans., 1970. 1: p. 1121–43.Google Scholar
  36. 36.
    Luo, S.-N., Peralta, P., Ma, C., Paisley, D.L., Greenfield, S.R., and Loomis, E.N.: Appl. Surf. Sci., 2007. 253: p. 9457–66.CrossRefGoogle Scholar
  37. 37.
    T. Antoun, L. Seaman, D.R. Curran, G.I. Kanel, S.V. Razorenov, and A.V. Utkin: in High-Pressure Shock Compression of Condensed Matter, L. Davison and Y. Horie, eds., Springer-Verlag, New York, 2003.Google Scholar
  38. 38.
    Jones, O.E. and Motes, J.D.: J. Appl. Phys., 1969. 40(12): p. 4920–28.CrossRefGoogle Scholar
  39. 39.
    Lee, E.H.: J. Appl. Mech., 1969. 36(1): p. 1–6.CrossRefGoogle Scholar
  40. 40.
    Rice, J.R.:.J. Mech. Phys. Solids, 1971. 19: p. 433–55.CrossRefGoogle Scholar
  41. 41.
    Bammann, D.J. and Aifantis, E.C.: Nucl. Eng. Des., 1989. 116: p. 355–62.CrossRefGoogle Scholar
  42. 42.
    Asaro, R.J.: Adv. Appl. Mech., 1983. 23: 1–115.CrossRefGoogle Scholar
  43. 43.
    Staroselsky, A. and Cassenti, B.N.: Mech. Mater., 2010. 42(10): p. 945–59.CrossRefGoogle Scholar
  44. 44.
    Belytschko, T., Liu, W.K., and Moran, B., Nonlinear Finite Elements for Continua and Structures. 2000, Chichester, England: Wiley.Google Scholar
  45. 45.
    ABAQUS Software, Abaqus Theory Manual, Dassault Systemes/Simulia, 2010.Google Scholar
  46. 46.
    Chu, C.C. and Needleman, A.: J. Eng. Mater. Technol., 1980. 102(3): p. 249–56.CrossRefGoogle Scholar
  47. 47.
    Ortiz, M. and Molinari, A.: J. Appl. Mech., 1992. 59: p. 48-53.CrossRefGoogle Scholar
  48. 48.
    Tong, W. and Ravichandran, G.: J. Appl. Mech., 1995. 62: 633–39.CrossRefGoogle Scholar
  49. 49.
    Chin, G.Y. and Mammel, W.L.: Trans. Metall. Soc. AIME, 1967. 239: p. 1400-05.Google Scholar
  50. 50.
    Peralta, P. and Laird, C.: Acta mater., 1997. 45(12): p. 5129–43.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2014

Authors and Affiliations

  • Kapil Krishnan
    • 1
  • Andrew Brown
    • 1
  • Leda Wayne
    • 1
  • Johnathan Vo
    • 1
  • Saul Opie
    • 1
  • Harn Lim
    • 1
  • Pedro Peralta
    • 1
    Email author
  • Sheng-Nian Luo
    • 2
  • Darrin Byler
    • 3
  • Kenneth J. McClellan
    • 3
  • Aaron Koskelo
    • 3
  • Robert Dickerson
    • 3
  1. 1.School for Engineering of Matter, Transport and EnergyArizona State UniversityTempeUSA
  2. 2.Peac Institute of Multiscale SciencesChengduP.R. China
  3. 3.Los Alamos National LaboratoryLos AlamosUSA

Personalised recommendations