Influence of Carbide Morphology and Microstructure on the Kinetics of Superficial Decarburization of C-Mn Steels

Abstract

Decarburization is an important process during the heat treatment of steels. It can be divided into three separated events: dissolution of carbides, diffusion of carbon through the iron matrix, and surface reactions. The process is very sensitive to temperature. During intercritical annealing, austenite nucleates in the cementite-ferrite interface and grows at the rate determined by the diffusion of carbon in austenite. The presence of a decarburizing atmosphere during annealing guides the carbon diffusion in ferrite toward the surface, generating a flux of carbon from austenite toward ferrite, disturbing the austenite growth. In the presence of pearlite, the ferrite-austenite interface can be assumed to remain static until pearlite is completely dissolved, reducing then the carbon flux in austenite, consequently diminishing the austenite formation rate. At intercritical temperatures, the cementite-free ferrite layer at the surface reaches a greater width due to the combination of the thermodynamic fraction of austenite, dissolution rate of cementite, and the diffusivity of carbon in austenite and ferrite. In this study, an experimental investigation of the effects of the carbide morphology and distribution and the \(\alpha -\gamma \) phase transformation in the decarburization kinetics on hypo-eutectoid steels is presented. It is suggested that the change of the dissolution kinetics of the carbides due to its morphology will affect the austenitization kinetics. Thus, the distribution of the carbon in the microstructure may determine the rate of decarburization in combination with the carbon diffusion through the phases or the gas-metal reactions.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

References

  1. 1.

    H. Grabke, Metall. Trans. B 1B, 2972–75 (1970)

    Google Scholar 

  2. 2.

    H. Grabke, G. Tauber, Arch. Eisenhuttenwes. 46, 215–22 (1975)

    Google Scholar 

  3. 3.

    D. Li, D. Anghelina, D. Burzic, J. Zamberger, R. Kienreich, H. Schifferl, W. Krieger, E. Kozeschnik, Steel Res. Int. 80, 298–303 (2009)

    Google Scholar 

  4. 4.

    N. Birks, W. Jackson, J. Iron Steel Inst. 208, 81–85 (1970)

    Google Scholar 

  5. 5.

    C. Oldani, Scripta Mater. 35, 1247–1371 (1996)

    Article  Google Scholar 

  6. 6.

    R. PremKumar, I. Samajdar, N. Viswanathan, V. Singal, V. Seshadri, J. Magn. Magn. Mater. 264, 75–85 (2003)

    Article  Google Scholar 

  7. 7.

    K. Marra, E. Alvarenga, V. Buono, ISIJ Int. 44, 618–22 (2004)

    Article  Google Scholar 

  8. 8.

    Y. Kim, H. Leckie, Metall. Trans. B 6, 303–10 (1975)

    Article  Google Scholar 

  9. 9.

    H. Grabke, Arch. Eisenhuttenwes. 46, 75–81 (1975)

    Google Scholar 

  10. 10.

    B. Korousic, B. Stupnisek, Kovine Zlitine Tehnol. (Slovenia) 30, 521–26 (1996)

    Google Scholar 

  11. 11.

    B. Soenen, S. Jacobs, M. De Wulf, Steel Res. Int. 76, 425–28 (2005)

    Google Scholar 

  12. 12.

    R. Baggerly, R. Drollinger, J. Mater. Eng. Perform. 2, 47–50 (1993)

    Article  Google Scholar 

  13. 13.

    A. Phillion, H. Zurob, C. Hutchinson, H. Guo, D. Malakhov, J. Nakano, G. Purdy, Metall. Mater. Trans. A 35A, 1237–42 (2004)

    Article  Google Scholar 

  14. 14.

    J. Gegner: The Fourth International Conference on Mathematical Modeling and Computer Simulation of Materials Technologies, 2006.

  15. 15.

    S. Choi, S.V.D. Zwaag, ISIJ Int. 52, 549–58 (2012)

    Article  Google Scholar 

  16. 16.

    J. Verhoeven, Mater. Charact. 25, 221–39 (1990)

    Article  Google Scholar 

  17. 17.

    M.A. Borodin, J. Math. Sci. 178, 13–40 (2011)

    Article  Google Scholar 

  18. 18.

    D. Mercier, X. Decoopman, D. Chicot, Surf. Coat. Technol. 202, 3419–26 (2008)

    Article  Google Scholar 

  19. 19.

    O. Perevertov, O. Stupakov, I. Tomáš, B. Skrbek, NDT & E Int. 44, 490–94 (2011)

    Article  Google Scholar 

  20. 20.

    B. Sundman, B. Jansson, J. Andersson, Calphad 9, 153–90 (1985)

    Article  Google Scholar 

  21. 21.

    J. Zhao, C. Mesplont, B. De Cooman, Mater. Sci. Eng. A 332, 110–16 (2002)

    Article  Google Scholar 

  22. 22.

    A. Bengtson, Spectrochim. Acta Part B At. Spectrosc. 40, 631–39 (1985)

    Article  Google Scholar 

  23. 23.

    T. Nelis, M. Aeberhard, R. Payling, J. Michler, P. Chapon, J. Anal. At. Spectrom. 19, 1354–60 (2004)

    Article  Google Scholar 

  24. 24.

    A. Bengtson, Spectrochim. Acta Part B At. Spectrosc. 49, 411–29 (1994)

    Article  Google Scholar 

  25. 25.

    R. Payling, D.G. Jones, S.A. Gower, Surf. Interface Anal. 23, 1–11 (1995)

    Article  Google Scholar 

  26. 26.

    B. Panigrahi, Bull. Mater. Sci. 24, 361–71 (2001)

    Article  Google Scholar 

  27. 27.

    A. Van Cauter, J. Dilewijns, F. Hörzenberger, R. Hubert, B. De Cooman, J. Mater. Eng. Perform. 9, 131–37 (2000)

    Article  Google Scholar 

  28. 28.

    A. Pandit, H. Bhadeshia, Proc. R. Soc. A Math. Phys. Eng. Sci. 468, 2767–78 (2012)

    Article  Google Scholar 

  29. 29.

    J. Verhoeven, E. Gibson, Metall. Mater. Trans. A 29A, 1181–89 (1998)

    Article  Google Scholar 

  30. 30.

    G. Speich, V. Demarest, R. Miller, Metall. Trans. A 12A, 1419–28 (1981)

    Article  Google Scholar 

  31. 31.

    C. Garcia, A. DeArdo, Metall. Trans. A 12, 521–30 (1981)

    Article  Google Scholar 

  32. 32.

    D. Shtansky, K. Nakai, Y. Ohmori, Acta Mater. 47, 2619–32 (1999)

    Article  Google Scholar 

  33. 33.

    D. Gaude-Fugarolas, H. Bhadeshia, J. Mater. Sci. 38, 1195–1201 (2003)

    Article  Google Scholar 

  34. 34.

    I. Calliari, M. Dabalà, E. Ramous, M. Zanesco, E. Gianotti, J. Mater. Eng. Perform. 15, 693–98 (2006)

    Article  Google Scholar 

  35. 35.

    C.-L. Zhang, Y.-Z. Liu, L.-Y. Zhou, C. Jiang, J.-F. Xiao, Int. J. Miner. Metall. Mater. 19, 116–21 (2012)

    Article  Google Scholar 

  36. 36.

    J. Snoek, Physica 8, 734–44 (1941)

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Henrique Duarte Alvarenga.

Additional information

Manuscript submitted January 16, 2014.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Alvarenga, H.D., De Putte, T.V., Van Steenberge, N. et al. Influence of Carbide Morphology and Microstructure on the Kinetics of Superficial Decarburization of C-Mn Steels. Metall Mater Trans A 46, 123–133 (2015). https://doi.org/10.1007/s11661-014-2600-y

Download citation

Keywords

  • Ferrite
  • Austenite
  • Cementite
  • Pearlite
  • Decarburization