Metallurgical and Materials Transactions A

, Volume 45, Issue 13, pp 6317–6328 | Cite as

Effect of Nitrogen Content on Grain Refinement and Mechanical Properties of a Reversion-Treated Ni-Free 18Cr-12Mn Austenitic Stainless Steel

  • P. Behjati
  • A. Kermanpur
  • A. Najafizadeh
  • H. Samaei Baghbadorani
  • L. P. Karjalainen
  • J. -G. Jung
  • Y. -K. Lee
Article

Abstract

Martensite reversion treatment was utilized to obtain ultrafine grain size in Fe-18Cr-12Mn-N stainless steels containing 0 to 0.44 wt pct N. This was achieved by cold rolling to 80 pct reduction followed by reversion annealing at temperatures between 973 K and 1173 K (700 °C and 900 °C) for 1 to 10seconds. The microstructural evolution was characterized using both transmission and scanning electron microscopes, and mechanical properties were evaluated using hardness and tensile tests. The steel without nitrogen had a duplex ferritic-austenitic structure and the grain size refinement remained inefficient. The finest austenitic microstructure was achieved in the steels with 0.25 and 0.36 wt pct N following annealing at 1173 K (900 °C) for 100 seconds, resulting in average grain sizes of about 0.240 ± 0.117 and 0.217 ± 0.73 µm, respectively. Nano-size Cr2N precipitates observed in the microstructure were responsible for retarding the grain growth. The reversion mechanism was found to be diffusion controlled in the N-free steel and shear controlled in the N-containing steels. Due to a low fraction of strain-induced martensite in cold rolled condition, the 0.44 wt pct N steel displayed relatively non-uniform, micron-scale grain structure after the same reversion treatment, but it still exhibited superior mechanical properties with a yield strength of 1324 MPa, tensile strength of 1467 MPa, and total elongation of 17 pct. While the high yield strength can be attributed to strengthening by nitrogen alloying, dislocation hardening, and slight grain refinement, the moderate strain-induced martensitic transformation taking place during tensile straining was responsible for enhancement in tensile strength and elongation.

References

  1. 1.
    [1] L.P. Karjalainen, T. Taulavuori, M. Sellman and A. Kyröläinen: Steel Res. Int., 2008, vol. 79, pp. 404-12.Google Scholar
  2. 2.
    [2] R.D.K. Misra, S. Nayak, S.A. Mali, J.S. Shah, M.C. Somani and L.P. Karjalainen: Metall. Mater. Trans. A, 2010, vol. 41A, pp. 3-12.CrossRefGoogle Scholar
  3. 3.
    [3] P. Behjati, A. Kermanpur and A. Najafizadeh: Metall. Mater. Trans. A, 2013, vol. 44, pp. 3254-31.Google Scholar
  4. 4.
    [4] K. Tomimura, S. Takaki, S. Tanimoto and Y. Tokunaga: ISIJ Int., 1991, vol. 31, pp. 721-27.CrossRefGoogle Scholar
  5. 5.
    [5] K. Tomimura, S. Takaki and Y. Tokunaga: ISIJ Int., 1991, vol. 31, pp. 1431-7.CrossRefGoogle Scholar
  6. 6.
    [6] M. Eskandari, A. Najafizadeh and A. Kermanpur: Mater. Sci. Eng. A, 2009, vol. 519, pp. 46-50.CrossRefGoogle Scholar
  7. 7.
    [7] M. Eskandari, A. Kermanpur and A. Najafizadeh: Mater. Letters, 2009, vol. 63, pp. 1442-4.CrossRefGoogle Scholar
  8. 8.
    [8] M.C. Somani, P. Juntunen, L.P. Karjalainen, R.D.K. Misra and A. Kyrolainen: Metall. Mater. Trans. A, 2009, vol. 40, pp. 729-44.CrossRefGoogle Scholar
  9. 9.
    [9] F. Forouzan, A. Najafizadeh, A. Kermanpur, A. Hedayati and R. Surkialiabad: Mater. Sci. Eng. A, 2010, vol. 527, pp. 7334-9.CrossRefGoogle Scholar
  10. 10.
    [10] S. Rajasekhara, L.P. Karjalainen, A. Kyrӧläinen and P.J. Ferreira: Mater. Sci. Eng. A, 2010, vol. 527, pp. 1986-96.CrossRefGoogle Scholar
  11. 11.
    [11] R.D.K. Misra, Z. Zhang, P.K.C. Venkatasurya, M.C. Somani and L.P. Karjalainen: Mater. Sci. Eng. A, 2010, vol. 527, 7779-92.CrossRefGoogle Scholar
  12. 12.
    [12] R.D.K. Misra, S. Nayak, P.K.C. Venkatasurya, V. Ramuni, M.C. Somani and L.P. Karjalainen: Metall. Mater. Trans. A, 2010, vol. 41, pp. 2162-74.CrossRefGoogle Scholar
  13. 13.
    [13] A. Weidner, A. Müller, A. Weiss and H. Biermann: Mater. Sci. Eng. A, 2013, vol. 571, pp. 68-76.CrossRefGoogle Scholar
  14. 14.
    [14] Y. Ma, J.-E. Jin and Y.-K. Lee: Scripta Mater., 2005, vol. 52, pp. 1311-15.CrossRefGoogle Scholar
  15. 15.
    A. Kisko, A. Hamada, L.P. Karjalainen, and J. Talonen: Microstructure and Mechanical Properties of Reversion Treated High Mn Austenitic 204Cu and 201 Stainless Steels, HMnS 2011, May 15–18, 2011, Grand Hilton Hotel, Seoul, paper B-19.Google Scholar
  16. 16.
    A. Kisko, L. Rovatti, I. Miettunen, L.P. Karjalainen, and J. Talonen: Microstructure and Anisotropy of Mechanical Properties in Reversion-Treated High-Mn Type 204Cu and 201 Stainless Steels, 7th European Stainless Steel Conference-Science and Market, Sept. 21–23, 2011, Como, Italy, No. 81.Google Scholar
  17. 17.
    [17] M. Moallemi, A. Najafizadeh, A. Kermanpur and A. Rezaee: Mater. Sci. Eng. A, 2011, vol. 530, pp. 378-81.CrossRefGoogle Scholar
  18. 18.
    [18] A. Rezaee, A. Kermanpur, A. Najafizadeh and M. Moallemi: Mater. Sci. Eng. A, 2011, vol. 528, pp. 5025-9.CrossRefGoogle Scholar
  19. 19.
    19.M. Moallemi, A. Kermanpur, A. Najafizadeh, A. Rezaee and H. SamaeiBaghbadorani: Mater. Lett., 2012, vol. 89, pp. 22–4.CrossRefGoogle Scholar
  20. 20.
    [20] J.W. Simmons: Mater. Sci. Eng. A, 1996, vol. 207, pp. 159-69.CrossRefGoogle Scholar
  21. 21.
    [21] H. Hänninen, J. Romu, R. Ilola, J. Tervo and A. Laitinen: J. Mater. Process. Tech., 2001, vol. 117, pp. 424-30.CrossRefGoogle Scholar
  22. 22.
    [22] M. Sumita, T. Hanawa and S.H. Teoh: Mater. Sci. Eng. C, 2004, vol. 24, pp. 753-60.CrossRefGoogle Scholar
  23. 23.
    23.G. Saller, K. Spiradek-Hahn, C. Scheu and H. Clemens: Mater. Sci. Eng. A., 2006, vol. 427, pp. 246-54.CrossRefGoogle Scholar
  24. 24.
    [24] Y.-S. Kim, S.M. Nam and S.-J. Kim: J. Mater. Process. Tech., 2007, vol. 187-188, pp. 575-7.CrossRefGoogle Scholar
  25. 25.
    [25] S. Wang, K. Yang, Y. Shan and L. Li: Mater. Sci. Eng. A, 2008, vol. 490, pp. 95-104.CrossRefGoogle Scholar
  26. 26.
    [26] Z. Wang, W. Fu, S. Sun, H. Li, Z. Lv and D. Zhao: Metall. Mater. Trans. A, 2010, vol. 41, pp. 1025-32.CrossRefGoogle Scholar
  27. 27.
    [27] M. Xu, J. Wang, L. Wang, W. Cui and C. Liu: Adv. Mater. Res., 2011, vol. 146-147, pp. 26-33.Google Scholar
  28. 28.
    [28] B. Hwang, T.-H. Lee, S.-J. Park, C.-S. Oh and S.-J. Kim: Mater. Sci. Eng. A. 2011, vol. 528, pp. 7257-66.CrossRefGoogle Scholar
  29. 29.
    [29] F. Shi, Y. Qi and C. Liu: J. Mater. Sci. Technol. 2011, vol. 27(12), pp. 1125-30.CrossRefGoogle Scholar
  30. 30.
    [30] B. Hwang and S.-J. Kim: Mater. Sci. Eng. A, 2012, vol. 531, pp. 182-85.CrossRefGoogle Scholar
  31. 31.
    [31] J. Kang and F.C. Zhang: Mater. Sci. Eng. A, 2012, vol. 558, pp. 623-31.CrossRefGoogle Scholar
  32. 32.
    Y. Ke, R. Yi Bin, and W. Peng: Sci. China, 2012, vol. 55, pp. 329-40.Google Scholar
  33. 33.
    [33] A. Di Schino, M. Barteri and J.M. Kenny: J. Mater. Sci., 2003, vol. 38, pp. 4725-33.CrossRefGoogle Scholar
  34. 34.
    [34] H.-B. Li, Z.-H. Jiang, Z.-R. Zhang and Y. Yanh: J. Iron Steel Res. Int., 2009, vol. 16(1), pp. 58-61.CrossRefGoogle Scholar
  35. 35.
    [35] J. Huang, X. Yea, J. Gua, X. Chena and Z. Xu: Mater. Sci. Eng. A, 2012, vol. 532, pp. 190-95.CrossRefGoogle Scholar
  36. 36.
    M.O. Speidel: Proc. Stainl. Steel World 2001 Conf., The Hague, The Netherlands, 2001.Google Scholar
  37. 37.
    [37] Y. Ikegami and R. Nemoto: ISIJ Int., 1996, vol. 36, pp. 855-61.CrossRefGoogle Scholar
  38. 38.
    [38] T.H. Lee, E. Shin, C.S. Oh and S.J. Kim: Scripta Mater., 2008, vol. 58, pp. 110-13.CrossRefGoogle Scholar
  39. 39.
    [39] P. Behjati, A. Kermanpur, A. Najafizadeh and H. Samaei Baghbadorani: Mater. Sci. Eng. A, 2014, vol. 592, pp. 77-82.CrossRefGoogle Scholar
  40. 40.
    [40] J. Talonen, P. Nenonen, G. Pape and H. Hänninen: Metall. Mater. Trans. A, 2005, vol. 36, pp. 421-32.CrossRefGoogle Scholar
  41. 41.
    [41] I. Shakhova, V. Dudko, A. Belyakov, K. Tsuzaki and R. Kaibyshev: Mater. Sci. Eng. A, 2012, vol. 545, pp. 176-86.CrossRefGoogle Scholar
  42. 42.
    [42] H-B. Li, J. Z-H. Jiang, H. Feng, Q-F. Ma and D-P. Zhan: J. Iron Steel Res. Int., 2012, vol. 19(8), pp. 43-51.CrossRefGoogle Scholar
  43. 43.
    [43] D.L. Johannsen, A. Kyrolainen and P.J. Ferreira: Metall. Mater. Trans. A, 2006, vol. 37, pp. 2325-38.CrossRefGoogle Scholar
  44. 44.
    [44] Q.X. Dai, Z.Z. Yuan, X.M. Luo and X.N. Cheng: Mater. Sci. Eng. A., 2004, vol. 385, pp. 445-8.CrossRefGoogle Scholar
  45. 45.
    [45] J.W. Simmons, B.S. Covino, J.A. Hawk and J.S. Dunning: ISIJ Int., 1996, vol. 36, pp. 846-54.CrossRefGoogle Scholar
  46. 46.
    [46] F. Shi, Y. Qi, M.Z. Xu and C.M. Liu: Adv. Mater. Res., 2010, vol. 146-147, pp. 189-193.Google Scholar
  47. 47.
    [47] R.D.K. Misra, Z. Zhang, P.K.C. Venkatasurya, M.C. Somani and L.P. Karjalainen: Mater. Sci. Eng. A, 2011, vol. 528, pp. 1889-96.CrossRefGoogle Scholar
  48. 48.
    [48] A.F. Padilha, R.L. Plaut and P.R. Rios: ISIJ Int., 2003, vol. 43, pp. 135-43.CrossRefGoogle Scholar
  49. 49.
    [49] L. Kaufman, E.V. Clougherty and R.J. Weiss: Acta Metall., 1963, vol. 11, 323-35.CrossRefGoogle Scholar
  50. 50.
    [50] M. Tendo, Y. Tadokoro, K. Suetsugu and T. Nakazawa: ISIJ Int., 2001, vol. 41(3), pp. 262-67.CrossRefGoogle Scholar
  51. 51.
    [51] M.O. Speidel, Mat-wiss. a. Werkstofftech., 2006, vol. 37(10), pp. 875-80.CrossRefGoogle Scholar
  52. 52.
    [52] M. Milititsky, N. De Wispelaere, R. Petrov, J.E. Ramos, A. Reguly, H. Hänninen, Mater. Sci. Eng. A, 2008, vol. 498, pp. 289–95.CrossRefGoogle Scholar
  53. 53.
    [53] T. Iwamoto, T. Tsuta and Y. Tomita: Int. J. Mech. Sci., 1998, vol. 40, pp. 173-82.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2014

Authors and Affiliations

  • P. Behjati
    • 1
  • A. Kermanpur
    • 1
  • A. Najafizadeh
    • 1
    • 5
  • H. Samaei Baghbadorani
    • 1
  • L. P. Karjalainen
    • 2
  • J. -G. Jung
    • 3
    • 4
  • Y. -K. Lee
    • 3
  1. 1.Department of Materials EngineeringIsfahan University of TechnologyIsfahanIran
  2. 2.Materials Engineering Laboratory, Centre for Advanced Steels ResearchUniversity of OuluOuluFinland
  3. 3.Department of Materials Science and EngineeringYonsei UniversitySeoulKorea
  4. 4.Light Metal DivisionKorea Institute of Materials ScienceChangwonKorea
  5. 5.Fould Institute of TechnologyFouldshareIran

Personalised recommendations