Skip to main content

Mechanism of Secondary Hardening in Rapid Tempering of Dual-Phase Steel

Abstract

Dual-phase steel with ferrite-martensite-bainite microstructure exhibited secondary hardening in the subcritical heat affected zone during fiber laser welding. Rapid isothermal tempering conducted in a Gleeble simulator also indicated occurrence of secondary hardening at 773 K (500 °C), as confirmed by plotting the tempered hardness against the Holloman–Jaffe parameter. Isothermally tempered specimens were characterized by analytic transmission electron microscopy and high-angle annular dark-field imaging. The cementite (Fe3C) and TiC located in the bainite phase of DP steel decomposed upon rapid tempering to form needle-shaped Mo2C (aspect ratio ranging from 10 to 25) and plate-shaped M4C3 carbides giving rise to secondary hardening. Precipitation of these thermodynamically stable and coherent carbides promoted the hardening phenomenon. However, complex carbides were only seen in the tempered bainite and were not detected in the tempered martensite. The martensite phase decomposed into ferrite and spherical Fe3C, and interlath-retained austenite decomposed into ferrite and elongated carbide.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. R. Nadlene, H. Esah, S. Norliana, and M. A. Mohd Irwan: World Acad. Sci. Eng. Technol., 2011, vol. 50, pp. 564–67.

    Google Scholar 

  2. C. Yao, B. Xu, J. Huang, P. Zhang, Y. Wu: Opt. Laser Eng., 2010, vol. 48, pp. 20–26.

    Article  Google Scholar 

  3. S.S. Nayak, V.H. Baltazar Hernandez, Y. Zhou: Metall. Mater. Trans. A, 2011, vol. 42A, pp. 3242–48.

    Article  Google Scholar 

  4. V.H. Baltazar Hernandez, S.S. Nayak, Y. Zhou: Metall. Mater. Trans. A, 2011, vol. 42A, pp. 3115–29.

    Article  Google Scholar 

  5. E. Biro and A. Lee: Sheet Metal Welding Conference XI, Sterling Heights, MI, 2004.

    Google Scholar 

  6. T. Burns: Master Thesis, University of Waterloo, 2009.

  7. M. Xia, E. Biro, Z. Tian, and Y. Zhou: ISIJ Int., 2008, vol. 48, pp. 809–14.

    Article  Google Scholar 

  8. P. Ghosh: ISIJ Int., 1990, vol. 30, pp. 317–24.

    Article  Google Scholar 

  9. V.H. Baltazar Hernandez, S.K. Panda, Y. Okita, and Y. Zhou: J. Mater. Sci., 2010, vol. 45, pp. 1638–47.

    Article  Google Scholar 

  10. H. Tanabe, A. Miyasaka, I. Anai, and S. Tanioka: Nippon Steel Tech. Rep., 1995, pp. 62–68.

  11. M. Jung, S.-J. Lee, and Y.-K. Lee: Metall. Mater. Trans. A, 2009, vol. 40A, pp. 551–59.

    Article  Google Scholar 

  12. G.B. Olson and W.S. Owen: Martensite, Asm International, Metals Park, OH, 1992, p. 261.

    Google Scholar 

  13. R. C. Thomson and M. K. Miller: Acta Mater., 1998, vol. 46, pp. 2203–13.

    Article  Google Scholar 

  14. D. Huang, S.S. Nayak, M.A. Wells, Y. Zhou, E. Biro, Sheet Metal Welding Conference XV Proceedings, Livonia, MI, 2012, pp. 1–11.

    Google Scholar 

  15. A.D.B. Gingell, H.K.D.H. Bhadeshia, D.G. Jones, K.J.A. Mawella: J. Mater. Sci., 1997, vol. 32, pp. 4815–20.

    Article  Google Scholar 

  16. H.K.D.H. Bhadeshia: Bainite in Steels: Transformations, Microstructure and Properties, IOM Communications Ltd, London, 2001.

    Google Scholar 

  17. D. Delagnes, P. Lamesle, M.H. Mathon, N. Mebarki, and C. Levaillant: Mater. Sci. Eng. A, 2005, vol. 394, pp. 435–44.

    Article  Google Scholar 

  18. C.H. Yoo, H.M. Lee, J.W. Chan, J.W. Morris Jr.: Metall. Mater. Trans. A, 1996, vol. 27A, pp. 3466–72.

    Article  Google Scholar 

  19. D. Rosenthal: Weld. J., 1941, vol. 20, p. 220s.

    Google Scholar 

  20. A.K. Jena, M.C. Chaturvedi: Mater. Sci. Eng., 1988, vol. 100, pp. 1–6.

    Article  Google Scholar 

  21. N. Saeidi, A. Ekrami: Mater. Sci. Eng. A, 2009, vol. 523, pp. 125–39.

    Article  Google Scholar 

  22. F. Danoix, R. Danoix, J. Akre, A. Grellier, D. Delagnes: J. Microscopy, 2011, vol. 244, pp. 305–10.

    Article  Google Scholar 

  23. J. H. Hollomon and L. D. Jaffe: Trans. TMS-AIME, 1945, vol. 162, pp. 223–49.

    Google Scholar 

  24. D. Kuhlmann-Wilsdorf: Metall. Trans. A, 1985, vol. 16A, pp. 2091–108.

    Article  Google Scholar 

  25. W. Saikaly, X. Bano, C. Issartel, G. Rigaut, L. Charrin, A. Charai: Metall. Mater. Trans. A, 2001, vol. 32A, pp. 1939–47.

    Article  Google Scholar 

  26. J.H. Jang, C.-H. Lee, H.N. Han, H.K.D.H. Bhadeshia, and D.-W. Suh: Mater. Sci. Technol., 2013, pp. 1–6.

  27. K. Nishioka, K. Ichikawa: Sci. Technol. Adv. Mater., 2012, vol. 13, pp. 1–20.

    Google Scholar 

  28. G.K. Tirumalasetty, C.M. Fang, Q. Xu, J. Jansen, J. Sietsma, M.A. Huis, H.W. Zandbergen: Acta Mater., 2012, vol. 60, pp. 7160–68.

    Article  Google Scholar 

  29. K. Aigner, W. Lengauer, D. Rafaja, P. Ettmayer: J. Alloy. Compd., 1994, vol. 215, pp. 121–26.

    Article  Google Scholar 

  30. W. Kim, J. Park, C. Suh, S. Cho, S. Lee, I.-J. Shon: Mater. Trans., 2009, vol. 50, pp. 2897–99.

    Article  Google Scholar 

  31. H.A. Wriedt, J.L. Murray: Bull. Alloy Phase Diagr., 1987, vol. 8, pp. 378–88.

    Article  Google Scholar 

  32. Y. Kang, Q. Han, X. Zhao, M. Cai: Mater. Des., 2013, vol. 44, pp. 331–39.

    Article  Google Scholar 

  33. J.M. Schissler, J. Arnould, G. Metauer: Mem. Sci. Rev. Metall., 1975, vol. 6, pp. 779–93.

    Google Scholar 

  34. J.H. Jang, I.G. Kim, H.K.D.H. Bhadeshia: Comput. Mater. Sci., 2009, vol. 44, pp. 1319–26.

    Article  Google Scholar 

  35. T. Furuhara, K. Kobayashi, T. Maki: ISIJ Int., 2004, vol. 44, pp. 1937–44.

    Article  Google Scholar 

  36. S. Yamasaki, H.K.D.H. Bhadeshia: Mater. Sci. Technol., 2003, vol. 19, pp. 723–31.

    Article  Google Scholar 

  37. D. Delagnes, F. Pettinari-Sturmel, M.H. Mathon, R. Danoix, F. Danoix, C. Bellot, P. Lamesle, A. Grellier: Acta Mater., 2012, vol. 60, pp. 5877–88.

    Article  Google Scholar 

  38. T.P. Hou, Y. Li, Y.D. Zhang, and K.M. Zu: Metall. Trans. A, 2014, vol. 45A, pp. 2553–61.

    Article  Google Scholar 

  39. A.-M.E. Rakayby, B. Mills: Mater. Sci. Technol., 1986, vol. 2, pp. 175–80.

    Article  Google Scholar 

  40. Z. Hu, X. Wu, C. Wang: Mater. Sci. Technol., 2004, vol. 20, pp. 425–28.

    Google Scholar 

  41. M.S. Bhat, J. Garrison, W.M., V.F. Zackay: Mater. Sci. Eng., 1979, vol. 41, pp. 1–15.

    Article  Google Scholar 

  42. W.B. Pearson: A Handbook of Lattice Spacings and Structures of Metals and Alloys, Pergamon Press, Oxford, 1958, pp. 895–1037.

    Book  Google Scholar 

  43. J. Koo and M. J. Luton: United Nations Patent, 5545269, 1996.

  44. C.H. Yoo, H.M. Lee, J.W. Chan, J. Morris, John W.: Metall. Mater. Trans. A, 1996, vol. 27A, pp. 3466–72.

    Article  Google Scholar 

  45. K. Cho, J. Choi, H. Kang, S. Kim, K. Lee, H. Yang, H. Kwon: Mater. Sci. Eng. A, 2010, vol. 527, pp. 7286–93.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dulal Chandra Saha.

Additional information

Manuscript submitted January 13, 2014.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Saha, D.C., Nayak, S.S., Biro, E. et al. Mechanism of Secondary Hardening in Rapid Tempering of Dual-Phase Steel. Metall Mater Trans A 45, 6153–6162 (2014). https://doi.org/10.1007/s11661-014-2591-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-014-2591-8

Keywords

  • Carbide
  • Martensite
  • Cementite
  • Bainite
  • Select Area Diffraction Pattern