Skip to main content

XPS Analysis of Ti6Al4V Oxidation Under UHV Conditions

Abstract

Oxidation of Ti6Al4V is studied by X-ray photoelectron spectroscopy (XPS). Oxide layer growth was monitored on the Ti6Al4V surface for 24 hours. The surface was previously etched with Ar+ ions under ultra-high vacuum conditions. XPS spectra show that TiO and Ti2O3, together with Al2O3, were the earliest oxides formed. Vanadium, despite being detected in its elementary form in the bulk, was not found in any of its oxidized states. TiO2, directly related to the good performance of Ti6Al4V for biomedical applications, did not contribute significantly to the passive layer at the beginning; nevertheless, it was identified after the oxidation process progressed to a more advanced stage. This behavior indicates that reoxidation of Ti6Al4V permits auto-healing of its passive layer, with the presence of TiO2, even in conditions of low oxygen availability.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. Yoshiki Oshida. “Bioscience and bioengineering of titanium materials” Elsevier, Amsterdam, 2007.

    Google Scholar 

  2. W.H. Lee and C.Y. Hyun. Applied Surface Science, 2006, v. 252, pp. 4250-4256.

    Article  Google Scholar 

  3. I. Milosev, M. Metikos-Hukovic and H.-H. Strehblow. Biomaterials, 2000, v. 21, pp. 2103-2113.

    Article  Google Scholar 

  4. M. Ask, J. Lausmaa, and B. Kasemo: Appl. Surf. Sci., 1988–1989, vol. 35, pp. 283–301.

  5. T. Sundararajan, U. Kamachi Mudali, K.G.M. Nair, S. Rajeswari and M. Subbaiyan. Materials Transactions, JIM, 1998, v. 39, No. 7, pp. 756-761.

    Article  Google Scholar 

  6. A. Azoulay, N. Shamir, E. Fromm and M.H. Mintz. Surface Science, 1997, v. 370, pp. 1-16.

    Article  Google Scholar 

  7. L. I. Vergara, M.C.G. Passeggi Jr. and J. Ferrón. Applied Surface Science, 2002, v. 187, pp. 199-206.

    Article  Google Scholar 

  8. H.-Y. Lin and J.D. Bumgardner. Applied Surface Science, 2004, v. 225, pp. 21-28.

    Article  Google Scholar 

  9. E. McCafferty and J.P. Wightman. Applied Surface Science, 1999, v. 143, pp. 92-100.

    Article  Google Scholar 

  10. C. Oviedo.: J. Phys. Condens. Matter, 1993, v. 5, pp. A153-A154.

    Article  Google Scholar 

  11. M.W. Roberts and M. Tomellini. Catalysis Today, 1992, v. 12, pp. 443-452.

    Article  Google Scholar 

  12. H.K. Jang, S.W. Whangbo, H.B. Kim, K.Y. Im, Y.S. Lee, I.W. Lyo and C.N. Whang. J. Vac. Sci. Technol. A, 2000, v. 18, pp. 917-921.

    Article  Google Scholar 

  13. A.R. González-Elipe, G. Munuera and J.P. Espinos. Surface Science, 1989, v. 220, pp. 368-380.

    Article  Google Scholar 

  14. M.H. Wong, F.T. Cheng, G.K.H. Pang and H.C. Man. Materials Science and Engineering A, 2007, v. 448, pp. 97-103.

    Article  Google Scholar 

  15. M.V. Kuznetsov, J.F. Zhuravlev and V.A. Gubanov. Journal of Electron Spectroscopy and Related Phenomena,1992, v. 58, pp. 169-176.

    Article  Google Scholar 

  16. J.W. Rogerts Jr., K.L. Erickson, D.N. Belton, R.W. Springer, T.N. Taylor and J.G. Beery. Applied Surface Science, 1988, v. 35, pp. 137-152.

    Article  Google Scholar 

  17. O. Yamamoto, K. Alvarez, T. Kikuchi and M. Fukuda. Acta Biomaterialia, 2009, v. 5, pp. 3605-3615.

    Article  Google Scholar 

  18. D.A. Shirley. Physical Review B, 1972, v. 12, pp. 4709-4714.

    Article  Google Scholar 

  19. C. Leyens: in Titanium and Titanium Alloys, C. Leyens and M. Peters, eds., Wiley-VCH, Weinheim, 2003.

  20. I. Milosev, T.Kosec and H.-H. Strehblow. Electrochimica Acta, 2008, v. 53, pp. 3547-3558.

    Article  Google Scholar 

  21. A.F. Carley, P.R. Chalker, J.C. Riviere and M.W.Roberts.J.Chem.Soc., Faraday Trans. 1, 1987, v. 83, pp. 351-370.

    Article  Google Scholar 

  22. M.C. Biesinger, L.W.M. Lau, A.R. Gerson, and R.St.C. Smart: Appl. Surf. Sci., 2010, vol. 257, pp. 887–98.

  23. NIST Standard Reference Database. http://srdata.nist.gov/xps/.

  24. P.H. Bolt, E. ten Grotenhuis, J.W. Geus and F.H.P.M. Habraken. Surface Science, 1995, v. 329, pp. 227-340.

    Article  Google Scholar 

  25. C.N. Sayers and N.R. Armstrong. Surface Science, 1978, v. 77, pp. 301-320.

    Article  Google Scholar 

  26. S.-H. Jeong, B.-S.Kim and B.-T. Lee. Journal of the Korean Physical Society, 2002, v. 41, pp. 67-72.

    Google Scholar 

  27. I.M. Ismail, B. Abdallah, M. Abou-Kharroub and O. Mrad. Nuclear Instruments and Methods in Physics Research B, 2012, v. 271, pp. 102-106.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by Grants from the Ministry of Science and Innovation (Grant MAT2009-14695-CO4-C01) and the Junta de Extremadura-FEDER (Grant GR10149). We thank the Servicio de Apoyo a la Investigación (SAIUEx) and the Surface Characterization and Calorimetry Platform of CIBER-BBN for performing XPS measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. L. González-Martín.

Additional information

Manuscript submitted February 5, 2014.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hierro-Oliva, M., Gallardo-Moreno, A.M. & González-Martín, M.L. XPS Analysis of Ti6Al4V Oxidation Under UHV Conditions. Metall Mater Trans A 45, 6285–6290 (2014). https://doi.org/10.1007/s11661-014-2570-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-014-2570-0

Keywords

  • TiO2
  • Passive Layer
  • High Resolution Spectrum
  • Titanium Monoxide
  • Metallic Titanium