Skip to main content
Log in

Microstructure and Strengthening Mechanisms in an Ultrafine Grained Al-Mg-Sc Alloy Produced by Powder Metallurgy

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Additions of Sc to an Al-Mg matrix were investigated, paying particular attention to the influence of Al3Sc precipitates and other dispersoids, as well as grain size, on mechanical behavior. Prior studies have shown that Sc significantly increases the strength of coarse-grained Al-Mg alloys. Prompted by these findings, we hypothesized that it would be of fundamental and technological interest to study the behavior of Sc additions to an ultrafine-grained (UFG) microstructure (e.g., 100’s nm). Accordingly, we investigated the microstructural evolution and mechanical behavior of a cryomilled ultrafine grained Al-5Mg-0.4Sc (wt pct) and compared the results to those of an equivalent fine-grained material (FG) produced by powder metallurgy. Experimental materials were consolidated by hot isostatic pressing (HIP’ing) followed by extrusion or dual mode dynamic forging. Under identical processing conditions, UFG materials generate large Al3Sc precipitates with an average diameter of 154 nm and spaced approximately 1 to 3 μm apart, while precipitates in the FG materials have a diameter of 24 nm and are spaced 50 to 200 nm apart. The strengthening mechanisms are calculated for all materials and it is determined that the greatest strengthening contributions for the UFG and FG materials are Mg-O/N dispersion strengthening and precipitate strengthening, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. O.N. Senkov, D.B. Miracle, S.A. Firstov: Metallic Materials with High Structural Efficiency, p. 3, Springer, Netherlands, Dordrecht, 2004.

    Google Scholar 

  2. Y.V. Milman: High Temp. Mater. Processes., 2006, vol. 25, pp. 1-10.

    Google Scholar 

  3. J. Røyset and N. Ryum: Int. Mater. Rev., 2005, vol. 50, pp. 19-44.

    Google Scholar 

  4. J.N. Fridlyander, N.I. Kolobnev, O.E. Grushko and V.G. Davydov: Mater. Sci. Forum., 1997, vol. 242, p. 249.

    Google Scholar 

  5. G.E. Totten and S.D. MacKenzie: Handbook of aluminum, p. 81-209, M. Dekker, New York, 2003.

    Google Scholar 

  6. E.L. Huskins, B. Cao and K.T. Ramesh: Mater. Sci. Eng., A, 2010, vol. 527, pp. 1292-98.

    Google Scholar 

  7. B. Han, E. Lavernia and F. Mohamed: Metall. Mater. Trans., A 2005, vol. 36, pp. 345-55.

    Google Scholar 

  8. K.E. Knipling, D.N. Seidman and D.C. Dunand: Acta Mater., 2011, vol. 59, pp. 943-54.

    Google Scholar 

  9. F. Fazeli, W.J. Poole and C.W. Sinclair: Acta Mater., 2008, vol. 56, pp. 1909-18.

    Google Scholar 

  10. D.N. Seidman, E.A. Marquis and D.C. Dunand: Acta Mater., 2002, vol. 50, pp. 4021-35.

    Google Scholar 

  11. R.A. Karnesky, L. Meng and D.C. Dunand: Acta Mater., 2007, vol. 55, pp. 1299-1308.

    Google Scholar 

  12. K.L. Kendig and D.B. Miracle: Acta Mater., 2002, vol. 50, pp. 4165-75.

    Google Scholar 

  13. Z. Ahmad: JOM, 2003, vol. 55, pp. 35-39.

    Google Scholar 

  14. O. Wouters: Ph.D. Thesis, University of Groningen, Netherlands, 2006.

  15. E. O. Hall: Proc. Phys. Soc., London, Sect. B, 1951, vol. 64, pp. 747-53.

    Google Scholar 

  16. N.J. Petch: The Journal of the Iron and Steel Institute, 1953, vol. 174, pp. 25-28.

    Google Scholar 

  17. J.C.M. Li: Mechanical properties of nanocrystalline materials, Pan Stanford Publisher, Singapore, 2011.

    Google Scholar 

  18. K. Ma, H. Wen, T. Hu, T.D. Topping, D. Isheim, D.N. Seidman, E.J. Lavernia and J.M. Schoenung: Acta Mater., 2014, vol. 62, pp. 141-155.

    Google Scholar 

  19. C.C. Koch and J. Narayan: MRS Online Proc. Libr., 2000, vol. 634.

  20. G.J. Fan, H. Choo, P.K. Liaw and E.J. Lavernia: Mater. Sci. Eng., A, 2005, vol. 409, pp. 243-48.

    Google Scholar 

  21. M. Khinlay, J.C. Earthman and F.A. Mohamed: Acta Mater., 2012, vol. 60, pp. 5850-57.

    Google Scholar 

  22. C. Xu, Z. Horita and T.G. Langdon: Mater. Sci. Eng., A, 2011, vol. 528, pp. 6059-65.

    Google Scholar 

  23. K. R. Cardoso, D. N. Travessa, W. J. Botta and A. M. Jorge Jr: Mater. Sci. Eng., A, 2011, vol. 528, pp. 5804-11.

    Google Scholar 

  24. C. Xu, M. Furukawa, Z. Horita and T.G. Langdon: Mater. Sci. Eng., A, 2005, vol. 398, pp. 66-76.

    Google Scholar 

  25. O. Sitdikov, T. Sakai, E. Avtokratova, R. Kaibyshev, Y. Kimura and K. Tsuzaki: Mater. Sci. Eng., A, 2007, vol. 444, pp. 18-30.

    Google Scholar 

  26. A. Loucif, R. B. Figueiredo, T. Baudin, F. Brisset and T. G. Langdon, Materials Science and Engineering: A 2010, vol. 527, pp. 4864-4869.

    Google Scholar 

  27. M. Das, G. Das, M. Ghosh, M. Wegner, V. Rajnikant, S. Ghosh Chowdhury and T. K. Pal: Mater. Sci. Eng., A, 2012, vol. 558, pp. 525-32.

    Google Scholar 

  28. A. P. Zhilyaev, K. Oh-ishi, T. G. Langdon and T. R. McNelley: Mater. Sci. Eng., A, 2005, vol. 410–411, pp. 277-80.

    Google Scholar 

  29. E. J. Lavernia, B. Q. Han and J. M. Schoenung: Mater. Sci. Eng., A, 2008, vol. 493, pp. 207-14.

    Google Scholar 

  30. G. Lucadamo, N. Y. C. Yang, C. San Marchi and E. J. Lavernia: Mater. Sci. Eng., A, 2006, vol. 430, pp. 230-41.

    Google Scholar 

  31. D. B. Witkin and E. J. Lavernia: Prog. Mater Sci., 2006, vol. 51, pp. 1-60.

    Google Scholar 

  32. C. Suryanarayana: Prog. Mater Sci., 2001, vol. 46, pp. 1-184.

    Google Scholar 

  33. F. Bensebaa: Nanoparticle technologies: from lab to market. p. 147-54, Elsevier/Academic Press, Amsterdam, 2013.

    Google Scholar 

  34. C. Junsheng, C. Hua, C. Hanbin, Y. Bin, F. Jianzhong and Z. Jishan: J. Univer. Sci. Technol. Beijing, 2007, vol. 14, pp. 523-28.

    Google Scholar 

  35. Y. Li, W. Liu, V. Ortalan, W.F. Li, Z. Zhang, R. Vogt, N.D. Browning, E.J. Lavernia and J.M. Schoenung, Acta Mater., 2010, vol. 58, pp. 1732-40.

    Google Scholar 

  36. R. Vogt, L. Hashemi-Sadraei, Y. Li, Z. Zhang, E.J. Lavernia, J.M. Schoenung and S.E. Mousavi: Mater. Sci. Eng., A, 2012, vol. 43, pp. 747-56.

    Google Scholar 

  37. A. P. Newbery, B. Ahn, P. Pao, S. R. Nutt and E. J. Lavernia, AMR Advanced Materials Research 2007, vol. 29-30, pp. 21-29.

    Google Scholar 

  38. M.A. Meyers and K.K. Chawla: Mechanical behavior of materials, p. 369-99, 558-91, Cambridge University Press, Cambridge, 2009.

    Google Scholar 

  39. T.H. Courtney: Mechanical behavior of materials, p. 1-210, Waveland, Illinois, 2000.

    Google Scholar 

  40. I.E. Foley and J.C. Anderson: Surf. Interface Anal., 2001, vol. 31, pp. 599-608.

    Google Scholar 

  41. A.P. Newbery, B. Ahn, R.W. Hayes, P.S. Pao, S.R. Nutt and E.J. Lavernia: Mater. Sci. Eng., A, 2008, vol. 39, pp. 2193-2205.

    Google Scholar 

  42. T.D. Topping. Ph.D. Dissertation, Materials Science and Engineering, University of California, Davis, 2012.

  43. T.D. Topping, S.R. Nutt and E.J. Lavernia: Mater. Sci. Eng., A, 2012, vol. 43, pp. 505-19.

    Google Scholar 

  44. A.P. Newbery, B. Ahn, T.D. Topping, P.S. Pao, S.R. Nutt and E.J. Lavernia: J. Mater. Process. Technol., 2008, vol. 203, pp. 37-45.

    Google Scholar 

  45. L. Shaw, H. Luo, J. Villegas, and D. Miracle: Scripta Mater., 2004, vol. 50, pp. 921-25.

    Google Scholar 

  46. E.A. Olevsky, J. Ma, J.C. LaSalvia and M.A. Meyers: Acta Mater., 2007, vol. 55, pp. 1351-66.

    Google Scholar 

  47. F. Tang, H. Meeks, J.E. Spowart, T. Gnaeupel-Herold, H. Prask and I.E. Anderson: Mater. Sci. Eng. A, 2004, vol. 386.

  48. R. Z. Valiev, I. V. Alexandrov, N. A. Enikeev, M. Yu Murashkin and I. P. Semenova: Rev. Adv. Mater. Sci., 2010, vol. 25, pp. 1-10.

    Google Scholar 

  49. B.A. Parker, Z.F. Zhou and P. Nolle: J. Mater. Sci,. 1995, vol. 30, pp. 452-58.

    Google Scholar 

  50. J. Royset: Metall. Sci. Technol., 2007, vol. 25, pp. 11-21.

    Google Scholar 

  51. S. J. L. Kang: Sintering : densification, grain growth, and microstructure. Elsevier Butterworth-Heinemann, Amsterdam, p. 37-70, 2005).

    Google Scholar 

  52. X. Wang and F. Ding: Adv. Mater. Res., 2011, vol. 146-147, pp. 1094-1101.

    Google Scholar 

  53. B. Zheng, Y. Lin, Y. Zhou and E.J. Lavernia: Mater. Sci. Eng., B, 2009, vol. 40, pp. 995-1004.

    Google Scholar 

  54. B. Zheng, L. Yaojun, Y. Zhou and E.J. Lavernia: Mater. Sci. Eng., B, 2009, vol. 40, pp. 768-78.

    Google Scholar 

  55. Z. Zhang, S. Dallek, R. Vogt, Y. Li, T. Topping, Y. Zhou, J. Schoenung and E. Lavernia: Metall. Mater. Trans. A, 2010, vol. 41, pp. 532-41.

    Google Scholar 

  56. O.C. Hellman, J.A. Vandenbroucke, J. Rusing, D. Isheim and D.N. Seidman: Microsc. Microanal., 2000, vol. 6, pp. 437-44.

    Google Scholar 

  57. H. Wen, T.D. Topping, D. Isheim, D.N. Seidman and E.J. Lavernia: Acta Mater., 2013, vol. 61, pp. 2769-82.

    Google Scholar 

  58. ASTM, “Standard Test Methods for Tension Testing of Metallic Materials,” 2008.

  59. K. Kanaya and S. Okayama: J. Phys., D, 1972, vol. 5, pp. 43-58.

    Google Scholar 

  60. E.A. Marquis and D.N. Seidman: Acta Mater., 2005, vol. 53, pp. 4259-68.

    Google Scholar 

  61. M.F. Ashby and L.M. Brown: Philos. Mag., 1963, vol. 8, pp. 1083-1103.

    Google Scholar 

  62. L.S. Toropova: Advanced aluminum alloys containing scandium : structure and properties, Gordon and Breach Science Publishers, Amsterdam, 1998: 20–155.

    Google Scholar 

  63. M.E. Drits, Y.G. Bykov and L.S. Toropova: Met. Sci. Heat Treat., 1985, vol. 27, pp. 309-12.

    Google Scholar 

  64. S. Iwamura, M. Nakayama and Y. Miura: Mater. Sci. Forum, 2002, vol. 396/402, pp. 1151-56.

    Google Scholar 

  65. G. Sha and A. Cerezo: Acta Mater., 2004, vol. 52, pp. 4503-16.

    Google Scholar 

  66. M. Dumont, W. Lefebvre, B. Doisneau-Cottignies and A. Deschamps: Acta Mater., 2005, vol. 53, pp. 2881-92.

    Google Scholar 

  67. T. Pettersen, B. Holmedal and E. Nes: Metall. Mater. Trans. A, 2003, vol. 34, 2737-44.

    Google Scholar 

  68. K. Ma and J.M. Schoenung: Philos. Mag. Lett., 2010, vol. 90, pp. 739-51.

    Google Scholar 

  69. K. Ma, J.M. Schoenung and E.J. Lavernia: Adv. Eng. Mater., 2012, vol. 14, pp. 77-84.

    Google Scholar 

  70. V. L. Tellkamp, E.J. Lavernia and A. Melmed: Metall. Mater. Trans., A, 2001, vol. 32, pp. 2335-43.

    Google Scholar 

  71. J.S. Vetrano, S.M. Bruemmer, L.M. Pawlowski and I.M. Robertson: Mater. Sci. Eng., A, 1997, vol. 238, pp. 101-07.

    Google Scholar 

  72. M. Ferry, N.E. Hamilton and F.J. Humphreys: Acta Mater., 2005, vol. 53, pp. 1097-1109.

    Google Scholar 

  73. H. J. Fecht: Nanostruct. Mater. 1995, vol. 6, pp. 33-42.

    Google Scholar 

  74. F. Zhou, R. Rodriguez, and E.J. Lavernia: Mater. Sci. Forum, 2002, vol. 386/388, pp. 409-14.

    Google Scholar 

  75. C. Goujon, P. Goeuriot, M. Chedru, J. Vicens, J.L. Chermant, F. Bernard, J.C. Niepce, P. Verdier and Y. Laurent: Powder Technol., 1999, vol. 105, pp. 328-36.

    Google Scholar 

  76. L. Jiang, J.K. Li, P.M. Cheng, G. Liu, R.H. Wang, B.A. Chen, J.Y. Zhang, J. Sun, M.X. Yang, and G. Yang: Sci. Rep., 2014, vol. 4.

  77. T. Hu, K. Ma, T. D. Topping, J. M. Schoenung and E. J. Lavernia: Acta Mater., 2013, vol. 61, pp. 2163-78.

    Google Scholar 

  78. G.M. Novotny and A.J. Ardell: Mater. Sci. Eng., A, 2001, vol. 318, pp. 144-54.

    Google Scholar 

  79. M.J. Jones and F.J. Humphreys: Acta Mater., 2003, vol. 51, pp. 2149-59.

    Google Scholar 

  80. M. Nakayama, A. Furuta, Y. Miura: Nippon Kinzoku Gakkaishi, 1995, vol. 59, p. 487.

    Google Scholar 

  81. E.A. Marquis and D. N. Seidman: Acta Mater., 2001, vol. 49, pp. 1909-19.

    Google Scholar 

  82. J.D. Robson, M.J. Jones and P.B. Prangnell: Acta Mater., 2003, vol. 51, pp. 1453-68.

    Google Scholar 

  83. J.W. Martin, R.D. Doherty and B. Cantor: Stability of microstructure in metallic systems, p. 219-366, Cambridge University Press, Cambridge, 1997.

    Google Scholar 

  84. I. M. Lifshitz and V.V. Slyozov: J. Phys. Chem. Solids, 1961, vol. 19, pp. 35-50.

    Google Scholar 

  85. R.W. Balluffi, A.M. Samuel, C.W. Carter and R.A. Kemper: Kinetics of materials, p. 363-81, J. Wiley & Sons, Hoboken, N.J., 2005.

    Google Scholar 

  86. C. Watanabe, D. Watanabe, R. Tanii and R. Monzen: Philos. Mag. Lett., 2010, vol. 90, pp. 103-11.

    Google Scholar 

  87. E. Kozeschnik, J. Svoboda, R. Radis and F.D. Fischer: Modell. Simul. Mater. Sci. Eng., 2010, vol. 18, pp. 1-19.

    Google Scholar 

  88. T.D. Topping and E.J. Lavernia: 13th International Conference on Aluminum Alloys, p. 959-69, John Wiley & Sons, Inc., 2012.

    Google Scholar 

  89. J. Chen, L. Zhen, L. Fan, S. Yang, S. Dai and W. Shao: Trans. Nonferrous Met. Soc. China, 2009, vol. 19, pp. 1071-75.

    Google Scholar 

  90. B.Q. Han, F.A. Mohamed, C. Bampton and E.J. Lavernia: Mater. Res. Soc. Symp. Pro., 2004, vol. 791, pp. 11-16.

    Google Scholar 

  91. B. Raeisinia, C.W. Sinclair, W.J. Poole and C.N. Tomé: Modell. Simul. Mater. Sci. Eng., 2008, vol. 16, pp. 1-15.

    Google Scholar 

  92. O. Randle and V. Engler: Introduction to texture analysis : macrotexture, microtexture, and orientation mapping, p. 3, CRC Press, Boca Raton, 2010.

    Google Scholar 

  93. Y. Li, T.D. Topping, Z. Zhang, R.G. Vogt, J.M. Schoenung and E.J. Lavernia: Microsc. Microanal., 2012, vol. 18, pp. 1902-03.

    Google Scholar 

  94. N. Hansen and B. Ralph: Acta Metall., 1986, vol. 34, pp. 1955-62.

    Google Scholar 

  95. M.E. Drits, L.S. Toropova and Y.G. Bykov: Met. Sci. Heat Treat., 1983, vol. 25, pp. 550-54.

    Google Scholar 

  96. A.J. Ardell: Metall. Trans. A, 1985, vol. 16, pp. 2131-65.

    Google Scholar 

  97. M.S. Kaiser, S. Datta, A. Roychowdhury and M.K. Banerjee: Mater. Manuf. Processes, 2008, 23: 74-81.

    Google Scholar 

  98. M.S. Kaiser, S. Datta, A. Roychowdhury and M.K. Banerjee: J. Mater. Eng. Perform., 2008, vol. 17, pp. 902-07.

    Google Scholar 

  99. C. Booth-Morrison, D.C. Dunand and D.N. Seidman: Acta Mater., 2011, vol. 59, pp. 7029-42.

    Google Scholar 

  100. B. Clausen: Ph.D. Thesis, Department of Solid Mechanics Dcamm, Technical University of Denmark, Lyngby, 1997.

  101. J. W. Hutchinson: Proc. R. Soc. London Ser. A, 1970, vol. 319, pp. 247-72.

    Google Scholar 

  102. R.W. Hyland and R.C. Stiffler: Scripta Metall. Mater., 1991, vol. 25, pp. 473-77.

    Google Scholar 

  103. A.S. Argon and E. Orowan: Physics of strength and plasticity, M.I.T. Press, Cambridge, 1969, p. 189.

    Google Scholar 

  104. E.A. Marquis, D.N. Seidman and D.C. Dunand: Acta Mater., 2003, vol. 51, pp. 4751-60.

    Google Scholar 

  105. O. Madelung, U. Rössler, and M. Schulz: The Landolt-Bornstein Database, vol. 111V/17B-22A-41B, 2013.

  106. D. Chung: Philos. Mag., 1963, vol. 8, pp. 833-41.

    Google Scholar 

  107. T.J. Van Daam and C. Bampton: US Patent, vol. Patent No. US 7,344,675 B2, 2008.

  108. K.T. Ramesh: Nanomaterials: mechanics and mechanisms, (Springer, Dordrecht, 2009).

    Google Scholar 

  109. R. W. Cahn and P. Haasen: Physical metallurgy, (North-Holland Physics, Amsterdam, 1996).

    Google Scholar 

  110. Ø. Ryen, B. Holmedal, O. Nijs, E. Nes, E. Sjölander and H. Ekström: Metall. Mater. Trans., A, 2006, vol. 37, pp. 1999-2006.

    Google Scholar 

  111. G.K. Williamson and W. H. Hall: Acta Metall., 1953, vol. 1, pp. 22-31.

    Google Scholar 

  112. H. Wen, R.K. Islamgaliev, K.M. Nesterov, R.Z. Valiev, E.J. Lavernia: Philos. Mag. Lett., 2013, vol. 93, pp. 481-89.

    Google Scholar 

  113. J.R. Davis Associates and ASM International Handbook Committee: Aluminum and Aluminum Alloys, ASM International, Materials Park, OH, 1993.

  114. E.A. Marquis, D.N. Seidman, M. Asta, C. Woodward and V. Ozolins: Phys. Rev. Lett., 2003, vol. 91, pp. 1-4.

    Google Scholar 

  115. N. Kumar and R. S. Mishra: Mater. Sci. Eng., A, 2013, vol. 580, pp. 175-83.

    Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge and express their appreciation for the support provided by the Office of Naval Research (Contract No. N00014-12-C-0241 and Grant No. ONR N00014-12-1-0237) and the program managers, Mr. Rodney Peterson, Dr. William Golumbfskie, and Dr. Lawrence Kabacoff. In addition, Prof. David N. Seidman and Dr. Dieter Isheim are acknowledged for providing access to atom probe and other facilities at Northwestern University Center for Atom Probe Tomography (NUCAPT).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enrique J. Lavernia.

Additional information

Manuscript submitted October 9, 2013.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Harrell, T.J., Topping, T.D., Wen, H. et al. Microstructure and Strengthening Mechanisms in an Ultrafine Grained Al-Mg-Sc Alloy Produced by Powder Metallurgy. Metall Mater Trans A 45, 6329–6343 (2014). https://doi.org/10.1007/s11661-014-2569-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-014-2569-6

Keywords

Navigation