Skip to main content
Log in

In Situ Thermo-magnetic Investigation of the Austenitic Phase During Tempering of a 13Cr6Ni2Mo Supermartensitic Stainless Steel

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The formation of austenite during tempering of a 13Cr6Ni2Mo supermartensitic stainless steel (X2CrNiMoV13-5-2) was investigated using an in situ thermo-magnetic technique to establish the kinetics of the martensite to austenite transformation and the stability of austenite. The austenite fraction was obtained from in situ magnetization measurements. It was found that during heating to the tempering temperature 1 to 2 vol pct of austenite, retained during quenching after the austenitization treatment, decomposed between 623 K and 753 K (350 °C and 480 °C). The activation energy for martensite to austenite transformation was found by JMAK-fitting to be 233 kJ/mol. This value is similar to the activation energy for Ni and Mn diffusion in iron and supports the assumption that partitioning of Ni and Mn to austenite are mainly rate determining for the austenite formation during tempering. This also indicates that the stability of austenite during cooling after tempering depends on these elements. With increasing tempering temperature the thermal stability of austenite is decreasing due to the lower concentrations of austenite-stabilizing elements in the increased fraction of austenite. After cooling from the tempering temperature the retained austenite was further partially decomposed during holding at room temperature. This appears to be related to previous martensite formation during cooling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. J.J. Dufrane: Supermartensitic Stainless Steel ‘99, KCI Publishing BV, Brussels, 1999, pp. 19–24.

    Google Scholar 

  2. P. Toussaint and J.J. Dufrane: Supermartensitic Stainless Steel 2002, KCI Publishing BV, Brussels, 2002, pp. 23–28.

    Google Scholar 

  3. J.C.M. Farrar: The Alloy Tree: A Guide to Low-Alloy Steels, Stainless Steels and Nickel-Base Alloys, Woodhead, Cambridge, 2004, pp. 48–49.

    Book  Google Scholar 

  4. K. Kondo, M. Ueda, K. Ogawa, H. Amaya, H. Hirata, H. Takabe, and Y. Miyazaki: Supermartensitic Stainless Steel ‘99, KCI Publishing BV, Brussels, 1999, pp. 11–18.

    Google Scholar 

  5. Y. Wei: PhD Thesis, The University of Sheffield, England, 2005.

  6. X.P. Ma, L.J. Wang, C.M. Liu, and S.V. Subramanian: Mater. Sci. and Eng. A, 2011, vol. 528, pp. 6812-18.

    Article  Google Scholar 

  7. R.W.K. Honeycombe and H.K.D.H. Bhadeshia: Steels: Microstructure and Properties, 2nd ed., Edward Arnold, London, 1995.

    Google Scholar 

  8. D.N. Zou, Y. Han, W. Zhang, and X.D. Fang: J. Iron Steel Res. Int., 2010, vol. 17, no. 8, pp. 50–54.

    Article  Google Scholar 

  9. C. Gesnouin, A. Hazarabedian, P. Bruzzoni, J. Ovejero-García, P. Bilmes, and C. Llorente: Corros. Sci., 2004, vol. 46, pp. 1633-47.

    Article  Google Scholar 

  10. J. Hubackova, V. Cihal, and K. Mazanec: Z. Werkstofftech., 1984, vol. 15, pp. 411-15.

    Article  Google Scholar 

  11. P.D. Bilmes, M. Solari, and C.L. Llorente: Mater. Charact., 2001, vol. 46, pp. 285-96.

    Article  Google Scholar 

  12. T.G. Gooch, P. Woollin, and A.G. Haynes: Supermartensitic Stainless Steel ‘99, KCI Publishing BV, Brussels, 1999, pp. 188–95.

    Google Scholar 

  13. Y. Song, X. Li, L. Rong, and Y. Li: Mater. Sci. Eng. A, 2011, vol. 528, pp. 4075-79.

    Article  Google Scholar 

  14. Y.Y. Song, X.Y. Li, L.J. Rong, D.H. Ping, F.X. Yin, and Y.Y. Li: Mater. Lett., 2010, vol. 64, pp. 1411-14.

    Article  Google Scholar 

  15. Y.Y. Song, D.H. Ping, F.X. Yin, X.Y. Li, and Y.Y. Li: Mater. Sci. Eng. A, 2010, vol. 527, pp. 614-18.

    Article  Google Scholar 

  16. Y.K. Lee, H.C. Shin, D.S. Leem, J.Y. Choi, W. Jin, and C.S. Choi: Mater. Sci. Technol., 2003, vol. 19, pp. 393-98.

    Article  Google Scholar 

  17. L. Zhao, N.H. van Dijk, E. Brück, J. Sietsma, and S. van der Zwaag: Mater. Sci. Eng. A, 2001, vol. 313, pp. 145-52.

    Article  Google Scholar 

  18. A. Bojack, L. Zhao, P.F. Morris, and J. Sietsma: Mater. Charact., 2012, vol. 71, pp. 77-86.

    Article  Google Scholar 

  19. D.C. Jiles: Acta Mater., 2003, vol. 51, pp. 5907-39.

    Article  Google Scholar 

  20. P.E. Merinov and A.G. Mazepa: Industrial Laboratory (Diagn. Mater.), 1997, vol. 63, no. 3, pp. 149–53.

    Google Scholar 

  21. A.S. Arrott and B. Heinrich: J. Appl. Phys., 1981, vol. 52, no. 3, pp. 2113-15.

    Article  Google Scholar 

  22. G.F. Vander Voort: Metallography, Principles and Practice, p. 647, McGraw-Hill, New York, NY, 1984.

    Google Scholar 

  23. Thermo-Calc Software package, Version S, Database TCFEv6.2, Stockholm, Sweden, 2011.

  24. A. Bojack, L. Zhao, and J. Sietsma: Solid State Phenom., 2011, vol. 172-174, pp. 899-904.

    Article  Google Scholar 

  25. A. Berkowitz and E. Kneller: Magnetism and Metallurgy, Academic Press, Inc., New York, 1969.

    Google Scholar 

  26. R.M. Bozorth: Ferromagnetism, John Wiley & Sons, Inc., Hoboken, NJ, 2003.

    Google Scholar 

  27. W.D. Callister Jr: Fundametals of Materials Science and Engineering: An integrated approach, 2nd ed., p. 743, Wiley, New York, NY, 2005.

    Google Scholar 

  28. X.P. Ma, L.J. Wang, C.M. Liu, and S.V. Subramanian: Mater. Sci. Eng. A, 2012, vol. 539, pp. 271-79.

    Article  Google Scholar 

  29. Y.R. Liu, D. Ye, Q.L. Yong, J. Su, K.Y. Zhao, and W. Jiang: J. Iron Steel Res. Int., 2011, vol. 18, no. 11, pp. 60–66.

    Article  Google Scholar 

  30. N. Nakada, T. Tsuchiyama, S. Takaki, and N. Miyano, ISIJ Int., 2011, vol. 51, no. 2, pp. 299-304.

    Article  Google Scholar 

  31. Y. He, K. Yang, and W. Sha: Metall. Mater. Trans. A, 2005, vol. 36A, pp. 2273-87.

    Article  Google Scholar 

  32. R. Schnitzer, R. Radis, M. Nöhrer, M. Schober, R. Hochfellner, S. Zinner, E. Povoden-Karadeniz, E. Kozeschnik, and H. Leitner: Mater. Chem. Phys., 2010, vol. 122, pp. 138-145.

    Article  Google Scholar 

  33. M. Avrami: J. Chem. Phys., 1939, vol. 7, pp. 1103-12.

    Article  Google Scholar 

  34. M. Avrami: J. Chem. Phys., 1940, vol. 8, pp. 212-24.

    Article  Google Scholar 

  35. M. Avrami: J. Chem. Phys., 1941, vol. 9, pp. 177-84.

    Article  Google Scholar 

  36. W. Johnson and R. Mehl: Trans. Am. Inst. Min. (Metall.) Eng., 1939, vol. 135, pp. 416.

    Google Scholar 

  37. A.N. Kolmogorov: Izv. Akad. Nauk. SSSR Ser Mat., 1937, vol. 3, pp. 355.

    Google Scholar 

  38. D.A. Porter, K.E. Easterling, and M.Y. Sherif: Phase Transformations in Metals and Alloys, 3rd ed., CRC Press, Boca Raton, 2009.

    Google Scholar 

  39. J.W. Christian: The Theory of Transformations in Metals and Alloys, Pergamon, Amsterdam, 2002.

    Google Scholar 

  40. I. Varga, E. Kuzmann, and A. Vértes: Hyperfine Interact., 1998, vol. 112, pp. 169-73.

    Article  Google Scholar 

  41. H. Nakagawa, T. Miyazaki, and H. Yokota: J. Mater. Sci., 2000, vol. 35, pp. 2245-53.

    Article  Google Scholar 

  42. P.P. Sinha, D. Sivakumar, N.S. Babu, K.T. Tharlan, and A. Natarajan: Steel Res., 1995, vol. 66, no. 11, pp. 490-94.

    Google Scholar 

  43. E. Brandes, G. Brook, and C. Smithells: Smithells Metals Reference Book, 7 ed., Butterworths-Heinemann, Oxford, 1998.

    Google Scholar 

  44. P. Wang, S. Lu, D. Li, X. Kang, and Y. Li: Acta Metall. Sinica, 2008, vol. 44, pp. 681-85.

    Google Scholar 

  45. A. Kulmburg, F. Korntheuer, M. Koren, O. Gründler, and K. Hutterer: BHM, 1981, vol. 126, pp. 104-108.

    Google Scholar 

  46. K.W. Andrews: J. Iron Steel Inst., 1965, vol. 203, pp. 721-27.

    Google Scholar 

  47. D.P. Koistinen and R.E. Marburger: Acta Metall., 1959, vol. 7, pp. 59-60.

    Article  Google Scholar 

  48. S.M.C. van Bohemen and J. Sietsma: Mater. Sci. Technol., 2009, vol. 25, pp. 1009-12.

    Article  Google Scholar 

  49. C.L. Magee: in Phase Transformations, ASM, Metals Park, OH, 1970, pp. 115–56.

  50. E. Jimenez-Melero, N.H. van Dijk, L. Zhao, J. Sietsma, S.E. Offerman, J.P. Wright, and S. van der Zwaag: Scripta Mater., 2007, vol. 56, pp. 421-24.

    Article  Google Scholar 

  51. G. Krauss: Steels: Heat treatment and processing principles, ASM International, Materials Park, Ohio, 1990.

    Google Scholar 

  52. Z. Nishiyama: Martensitic Transformation, Academic Press, New York, 1978.

    Google Scholar 

  53. M. Amirthalingam: PhD Thesis, Delft University of Technology, The Netherlands, 2010.

  54. T. Hojo, K.I. Sugimoto, Y. Mukai, and S. Ikeda: ISIJ Int., 2008, vol. 48, pp. 824-29.

    Article  Google Scholar 

  55. L. Zhao, B. Mainfroy, M. Janssen, A. Bakker, and J. Sietsma: Scripta Mater., 2006, vol. 55, pp. 287-90.

    Article  Google Scholar 

  56. H.-J. Niederau: Stahl und Eisen, 1978, vol. 98, no. 8, pp. 385-92.

    Google Scholar 

  57. S. van der Zwaag, L. Zhao, S.O. Kruijver, and J. Sietsma: ISIJ Int., 2002, vol. 42, pp. 1565-70.

    Article  Google Scholar 

  58. P.J. Jacques, S. Allain, O. Bouaziz, A. De, A.F. Gourgues, B.M. Hance, Y. Houbaert, J. Huang, A. Iza-Mendia, S.E. Kruger, M. Radu, L. Samek, J. Speer, L. Zhao, and S. van der Zwaag: Mater. Sci. Technol., 2009, vol. 25, pp. 567-74.

    Article  Google Scholar 

Download references

Acknowledgments

This research was carried out under the project number M41.5.10392 in the framework of the Research Program of the Materials innovation institute M2i (www.m2i.nl). The authors wish to thank Cathy Bell and Matthew Green from Tata Steel Europe for their kind support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Sietsma.

Additional information

Manuscript submitted January 13, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bojack, A., Zhao, L., Morris, P.F. et al. In Situ Thermo-magnetic Investigation of the Austenitic Phase During Tempering of a 13Cr6Ni2Mo Supermartensitic Stainless Steel. Metall Mater Trans A 45, 5956–5967 (2014). https://doi.org/10.1007/s11661-014-2551-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-014-2551-3

Keywords

Navigation