Skip to main content
Log in

Enhanced Electrical and Mechanical Properties of Alumina-Based TiC Composites by Spark Plasma Sintering

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Alumina composites incorporating with 0, 5, 10 15, 20, and 25 vol pct of TiC were consolidated by the spark plasma sintering at 1673 K (1400 °C). The effects of increasing TiC compositions on electrical and mechanical properties of the composites were investigated at room temperature. The dc electrical conductivity behavior demonstrates a transition from insulator to conductor around 12.5 vol pct of TiC in the framework of percolation theory. The conductivity attains a maximum value of ≈230 S/m at 25 vol pct of TiC sufficient to machine the composite by electro discharging machining. The Vickers hardness and fracture toughness of the composites increase with the addition of TiC vol pct, whereas elastic modulus decreases. The results indicate that crack deflection, crack bridging, and crack branching by the TiC particles are responsible for the significantly improved fracture toughness of the composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. R. M. Erb, R. Libanori, N. Rothfuchs, A. R. Studart, Science 2012, 335, 199–204.

    Article  Google Scholar 

  2. W. Acchar, C.R.F.D. Camara, C.A.A. Cairo, and M. Filgueira: Mater. Res., 2012, vol. 15, pp. 821–24.

  3. C.-H. Lee, H.-H. Lu, C.-A. Wang, P. K. Nayak, J.-L. Huang, J. Am. Ceram. Soc. 2011, 94, 959–67.

    Article  Google Scholar 

  4. A. Krell, P. Blank, L. M. Berger, V. Richter, Am. Ceram. Soc. Bull. 1999, 78, 65–73.

    Google Scholar 

  5. R. Paluri and S. Ingole: JOM, 2011, vol. 63, pp. 77–83.

  6. E. Medvedovski, Ceram. Int. 2006, 32, 369–75.

    Article  Google Scholar 

  7. E. Refugio-García, D. Hernández-Silva, E. Terrés-Rojas, J. A. Rodríguez-García, E. Rocha-Rangel, Mater. Res. 2012, 15, 898–902.

    Article  Google Scholar 

  8. J. R. Martinelli, F. F. Sene, Ceram. Int. 2000, 26, 325–35.

    Article  Google Scholar 

  9. K. Lozano, L. Espinoza, K. Hernandez, A. R. Adhikari, G. Radhakrishnan, P. M. Adams, J. Appl. Phys. 2009, 105, 103511.

    Article  Google Scholar 

  10. F. Calignano, L. Denti, E. Bassoli, A. Gatto, L. Iuliano, Int J Adv Manuf Technol 2013, 66, 1757–68.

    Google Scholar 

  11. C. G. Raptis, A. Patsidis, G. C. Psarras, EXPRESS POLYMER LETTERS 2010, 4, 234–43.

    Article  Google Scholar 

  12. L. Tsetseris, S. T. Pantelides, Acta Mater. 2008, 56, 2864–71.

    Article  Google Scholar 

  13. E. D. Whitney, P. N. Vaidyanathan, Am. Ceram. Soc. Bull. 1988, 67, 943–1072.

    Google Scholar 

  14. T. Nagano, H. Kato, F. Wakai, J. Am. Ceram. Soc. 1991, 74, 2258–62.

    Article  Google Scholar 

  15. K. F. Cai, D. S. McLachlan, N. Axen, R. Manyatsa, Ceram. Int. 2002, 28, 217–22.

    Article  Google Scholar 

  16. J. Gong, Z. Zhao, H. Miao, Z. Guan, Scr. Mater. 2000, 43, 27–31.

    Article  Google Scholar 

  17. R. P. Wahi, B. Ilschner, J Mater Sci 1980, 15, 875–85.

    Article  Google Scholar 

  18. Y.-W. Kim, J.-G. Lee, J. Am. Ceram. Soc. 1989, 72, 1333–37.

    Article  Google Scholar 

  19. M. P. Borom, and M. Lee, Advanced Ceramic Materials 1986, 1, 335–40.

    Google Scholar 

  20. Y. Zhang, L. Wang, W. Jiang, G. Bai, and L. Chen: Mater. Trans., 2005, vol. 46, pp. 2015–19.

  21. A. Goldstein, A. Singurindi, J. Am. Ceram. Soc. 2000, 83, 1530–32.

    Article  Google Scholar 

  22. D. S. Perera, M. Tokita, S. Moricca, J. Eur. Ceram. Soc. 1998, 18, 401–04.

    Article  Google Scholar 

  23. L. Gao, J. S. Hong, H. Miyamoto, S. D. D. L. Torre, J. Eur. Ceram. Soc. 2000, 20, 2149–52.

    Article  Google Scholar 

  24. N. Tamari, I. Kondoh, T. Tanaka, N. Tokunaga, M. Kawahara, M. Tokita, K. Tezuka, T. Yamamoto, J. Ceram. Soc. Jpn. 1997, 105, 911–14.

    Article  Google Scholar 

  25. G. R. Anstis, P. Chantikul, B. R. Lawn, D. B. Marshall, J. Am. Ceram. Soc. 1981, 64, 533–38.

    Article  Google Scholar 

  26. A. Bellosi, G. De Portu, S. Guicciardi, J. Eur. Ceram. Soc. 1992, 10, 307–15.

    Article  Google Scholar 

  27. D. Stauffer, A. Aharony, Introduction To Percolation Theory, Taylor & Francis, London 1994.

    Google Scholar 

  28. I. Webman, J. Jortner, M. H. Cohen, Physical Review B 1975, 11, 2885–92.

    Article  Google Scholar 

  29. S. Harvey, Z. Richard, The Journal of Chemical Physics 1970, 53, 3759–61.

    Article  Google Scholar 

  30. U. Abdurakhmanov, S. Sharipov, Y. Rakhimova, M. Karabaeva, M. Baydjanov, J. Am. Ceram. Soc. 2006, 89, 2946–48.

    Google Scholar 

  31. K. S. Deepa, S. K. Nisha, P. Parameswaran, M. T. Sebastian, J. James, Appl. Phys. Lett. 2009, 94, 142902.

    Article  Google Scholar 

  32. I. BALBERG, D. AZULAY, D. TOKER, O. MILLO, International Journal of Modern Physics B 2004, 18, 2091–121.

    Article  Google Scholar 

  33. Y. M. Luo, S. Q. Li, J. Chen, R. G. Wang, J. Q. Li, W. Pan, J. Am. Ceram. Soc. 2002, 85, 3099–101.

    Article  Google Scholar 

  34. S. Ping: Phys. Rev. B, 1980, vol. 21, pp. 2180–95.

  35. B. E. Kilbride, J. N. Coleman, J. Fraysse, P. Fournet, M. Cadek, A. Drury, S. Hutzler, S. Roth, W. J. Blau, J. Appl. Phys. 2002, 92, 4024–30.

    Article  Google Scholar 

  36. S. Lopez-Esteban, C. F. Gutierrez-Gonzalez, G. Mata-Osoro, C. Pecharroman, L. A. Diaz, R. Torrecillas, J. S. Moya, Scr. Mater. 2010, 63, 219–22.

    Article  Google Scholar 

  37. W. D. Kingery, H. K. Bowen, D. R. Uhlmann, Introduction to ceramics, Wiley, 1976.

    Google Scholar 

  38. G. H. Li, Z. X. Hu, L. D. Zhang, Z. R. Zhang, J. Mater. Sci. Lett. 1998, 17, 1185–86.

    Article  Google Scholar 

  39. R.-x. Shi, J. Li, Y.-s. Yin, H.-y. Ge, Materials Science and Engineering: A 2011, 528, 5341–47.

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by the Research Center, College of Engineering King Saud University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kaleem Ahmad.

Additional information

Manuscript submitted March 20, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmad, K., Pan, W. Enhanced Electrical and Mechanical Properties of Alumina-Based TiC Composites by Spark Plasma Sintering. Metall Mater Trans A 45, 6271–6276 (2014). https://doi.org/10.1007/s11661-014-2550-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-014-2550-4

Keywords

Navigation