An Experimental Investigation into Additive Manufacturing-Induced Residual Stresses in 316L Stainless Steel

Abstract

Additive manufacturing (AM) technology provides unique opportunities for producing net-shape geometries at the macroscale through microscale processing. This level of control presents inherent trade-offs necessitating the establishment of quality controls aimed at minimizing undesirable properties, such as porosity and residual stresses. Here, we perform a parametric study into the effects of laser scanning pattern, power, speed, and build direction in powder bed fusion AM on residual stress. In an effort to better understand the factors influencing macroscale residual stresses, a destructive surface residual stress measurement technique (digital image correlation in conjunction with build plate removal and sectioning) has been coupled with a nondestructive volumetric evaluation method (i.e., neutron diffraction). Good agreement between the two measurement techniques is observed. Furthermore, a reduction in residual stress is obtained by decreasing scan island size, increasing island to wall rotation to 45 deg, and increasing applied energy per unit length (laser power/speed). Neutron diffraction measurements reveal that, while in-plane residual stresses are affected by scan island rotation, axial residual stresses are unchanged. We attribute this in-plane behavior to misalignment between the greatest thermal stresses (scan direction) and largest part dimension.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  1. 1.

    I. Gibson, D.W. Rosen, B. Stucker: Additive manufacturing technologies: Rapid prototyping to direct digital manufacturing, Springer, New York, NY, 2010.

    Google Scholar 

  2. 2.

    S.H. Huang, P. Liu, A. Mokasdar, L. Hou: International Journal of Advanced Manufacturing Technology, 2013, vol. 67, pp. 1191-1203.

    Article  Google Scholar 

  3. 3.

    D.D. Gu, W. Meiners, K. Wissenbach, R. Poprawe: International Materials Reviews, 2012, vol 57, pp. 133-164.

    Article  Google Scholar 

  4. 4.

    R. Felzmann, S. Gruber, G. Mitteramskogler, P. Tesavibul, A.R. Boccaccini, R. Liska, J. Stampfl: Advanced Engineering Materials, 2012, vol. 14, pp. 1052-1058.

    Article  Google Scholar 

  5. 5.

    N. Travitzky, A. Bonet, B. Dermeik, T. Fey, I. Filbert-Demut, L. Schlier, T. Schlordt, P. Greil: Advanced Engineering Materials, 2014, DOI: 10.1002/adem.201400097.

    Google Scholar 

  6. 6.

    P. Mercelis and J.-P. Kruth: Rapid Prototyping Journal,2006, vol. 12, pp. 254-265.

    Article  Google Scholar 

  7. 7.

    C.R. Knowles, T.H. Becker, R.B. Tait: South African Journal of Industrial Engineering, 2012, vol. 23, pp. 119-129.

    Google Scholar 

  8. 8.

    M.F. Zaeh, G. Branner: Prod. Eng. Res. Devel., 2010, vol. 4, pp. 35-45.

    Article  Google Scholar 

  9. 9.

    J.P. Kruth, J. Deckers, E. Yasa, R. Wauthlé: Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2012, vol. 226, pp. 980-991.

    Article  Google Scholar 

  10. 10.

    E. Yasa: Dissertation, Katholieke Universiteit Leuven, Belgium, 2011.

  11. 11.

    N.W. Klingbeil, J.L. Beuth, R.K. Chin, C.H. Amon: International Journal of Mechanical Sciences, 2002, vol. 44, pp. 57-77.

    Article  Google Scholar 

  12. 12.

    P. Aggarangsi and J.L. Beuth: Proc. Annu. Int. Solid Freeform Fabr. Sympos., Austin, Texas, 2006, pp. 709–20.

  13. 13.

    A. Vasinota, J.L. Beuth, M.L. Griffith: ASME Journal of Manufacturing Science and Engineering, 2007, vol. 129, pp. 101-109.

    Article  Google Scholar 

  14. 14.

    M. Shiomi, K. Osakada, K. Nakamura, T. Yamashita, F. Abe: CIRP Annals - Manufacturing Technology, 2004, vol. 53, pp. 195-198.

    Article  Google Scholar 

  15. 15.

    V. Hauk: Structural and residual stress analysis by nondestructive methods, Elsevier Science B.V. Amsterdam, The Netherlands, 1997.

    Google Scholar 

  16. 16.

    P.J. Withers, H.K.D.H. Bhadeshia: Materials Science and Technology, 2001, vol. 17, pp. 355-365.

    Article  Google Scholar 

  17. 17.

    I.C. Noyan, T.C. Huang, B.R. York: Critical Reviews in Solid State and Materials Sciences, 1995, vol. 20, pp. 125-177.

    Article  Google Scholar 

  18. 18.

    D.W. Brown, T.M. Holden, B. Clausen, M.B. Prime, T.A. Sisneros, H. Swensen, J. Vaja: Acta Materialia, 2011, vol. 59, pp. 864-873.

    Article  Google Scholar 

  19. 19.

    M.E. Fitzpatrick, A. Lodini: Analysis of Residual Stress by Diffraction Using Neutron and Synchrotron Radiation. Taylor & Francis, London, 2003.

    Google Scholar 

  20. 20.

    D.I. Crecraft: Journal of Sound and Vibration, 1967, vol. 5, pp. 173-192.

    Article  Google Scholar 

  21. 21.

    D.D.L. Chung: Thermochemica Acta, 2000, vol. 364, pp. 121-132.

    Article  Google Scholar 

  22. 22.

    E.S. Gorkunov, S.M. Zadvorkin, and L.S. Goruleva: 18th World Conference for Nondestructive Testing, Durban, South Africa, 16–20 April, 2012.

  23. 23.

    V. Sergo, G. Pezzotti, O. Sbaizero, T. Nishida: Acta Materialia, 1998, vol. 46, pp.1701-10.

    Article  Google Scholar 

  24. 24.

    J.W. Ager III, M.D. Drory: Physical Review B, 1993, vol. 48, pp. 2601-2607.

    Article  Google Scholar 

  25. 25.

    K. Kusaka, T. Hanabusa, M. Nishida, F. Inoko: Thin Solid Films, 1996, vol. 290–291, pp. 248-253.

    Article  Google Scholar 

  26. 26.

    T. Kannengiesser, A. Kromm, M. Rethmeier, J. Gibmeier, C. Genzel: Advances in X-ray Analysis, 2009, vol. 52, pp. 755-762.

    Google Scholar 

  27. 27.

    Y. Watanabe, M. Nishida, T. Hanabusa: Advances in X-ray Analysis, 2009, vol. 52, pp. 271-278.

    Google Scholar 

  28. 28.

    ASTM Standard E837 REV A: Standard Test Method for Determining Residual Stresses by the Hole-Drilling Strain-Gage Method, ASTM International, West Conshohocken, PA, 2013.

  29. 29.

    M.B. Prime: Journal of Engineering Materials and Technology, 2000, vol. 123, pp. 162-168.

    Article  Google Scholar 

  30. 30.

    M.B. Prime: Applied Mechanics Reviews, 1999, vol. 52, pp. 75-96.

    Article  Google Scholar 

  31. 31.

    D.V. Nelson, A. Makino, T. Schmidt: Experimental Mechanics, 2006, vol. 46, pp. 31-38.

    Article  Google Scholar 

  32. 32.

    J.D. Lord, D. Penn, P. Whitehead: Applied Mechanics and Materials, 2008, vol. 13-14, pp. 65-73.

    Article  Google Scholar 

  33. 33.

    J. Gao, H. Shang: Applied Optics, 2009, vol. 48, pp. 1371-1381.

    Article  Google Scholar 

  34. 34.

    A. Baldi: Experimental Mechanics, 2013, doi: 10.1007/s11340-013-9814-6.

    Google Scholar 

  35. 35.

    J. Zhu, H. Xie, Z. Hu, P. Chen, Q. Zhang: Surface & Coatings Technology, 2011, vol. 206, pp. 1396-1402.

    Article  Google Scholar 

  36. 36.

    N. Daynes, G. Horne, P.J. Heard, D.Z.L. Hodgson, A. Shterenlikht: Advances in X-ray Analysis, 2009, vol. 52: pp. 651-658.

    Google Scholar 

  37. 37.

    A. M. Korsunsky, M. Sebastiani, E. Bemporad: Surface & Coatings Technology, 2010, vol. 205, pp. 2393-2403.

    Article  Google Scholar 

  38. 38.

    Y.S. Yang, J.G. Bae, C.G. Park: Journal of Physics: Conference Series, 2008, vol. 100, pp. 012018.

    Article  Google Scholar 

  39. 39.

    L. Bingleman and G.S. Schaker: Proceedings of the SEM Annual Conference, June 7-10, 2010, Indianapolis, USA.

  40. 40.

    J. Zhang: Optical Engineering, 1998, vol. 37, pp. 2402-2409.

    Article  Google Scholar 

  41. 41.

    O. Sedivy, C. Krempaszky, and S. Holy: Aust. Congr. Appl. Mech., Brisbane, Australia, December 10–12, 2007.

  42. 42.

    J. Zhang, W.C. Fok, and T.C. Chong: Proc. SPIE 2921, Int. Conf. Exp. Mech. Adv. Appl., 1997, pp. 584–91.

  43. 43.

    S. Suresh, A.E. Giannakopoulos: Acta Materialia, 1998, vol. 46, pp. 5575-5567.

    Article  Google Scholar 

  44. 44.

    B. Vrancken, R. Wauthlé, J.-P. Kruth, and J. Van Humbeeck: Proc. Solid Freeform Fabr. Sympos., Austin, Texas, Aug. 12-14, 2013, pp. 393–407.

  45. 45.

    C. Kamath, B. El-dasher, G.F. Gallegos, W.E. King, R. Lee, and A. Sisto: Int. J. Adv. Manuf. Technol., 2014, vol. 74, pp. 65–78.

  46. 46.

    L. Thijs, M.L. Montero Sistiaga, R. Wauthle, Q.G. Xie, J.-P. Kruth, J. V. Humbeeck: Acta Materialia, 2013, vol. 61, pp. 4657-4668.

    Article  Google Scholar 

  47. 47.

    T. Niendorf, S. Leuders, A. Riemer, H.A. Richard, T. Tröster, D. Schwarze: Metallurgical and Materials Transactions B, 2013, vol. 44B, pp. 794-796.

    Article  Google Scholar 

  48. 48.

    J.A. Choren, S.M. Heinrich, M.B. Silver-Thorn: Journal of Materials Science, 2013, vol. 48, pp. 5103-5112.

    Article  Google Scholar 

  49. 49.

    H. Gu, H. Gong, D. Pal, K. Rafi, T. Starr, and B. Stucker: Twenty Forth Annual International Solid Freeform Fabrication Symposium—An Additive Manufacturing Conference, Austin, TX, August 12–14, 2013.

  50. 50.

    D.B. Hann, J. Iammi, J. Folkes: J. Phys. D: Appl. Phys., 2011, vol. 44, pp. 445401.

    Article  Google Scholar 

  51. 51.

    T.W. Eagar, N.S. Tsai: Welding Journal, 1983, vol. 62, pp. S346-S355.

    Google Scholar 

  52. 52.

    R. Rai, J.W. Elmer, T.A. Palmer, T. DebRoy: J. Phys. D: Appl. Phys., 2007, vol. 40, pp. 5733-5766.

    Article  Google Scholar 

  53. 53.

    P. Bleys, J.-P. Kruth, B. Lauwers, B. Schacht, V. Balasubramanian, L. Froyen, J.V. Humbeek: Advanced Engineering Materials, 2006, vol. 8, pp. 15-25.

    Article  Google Scholar 

  54. 54.

    L. Wang, S.D. Felicelli, P. Pratt: Materials Science and Engineering A, 2008, vol. 496, pp. 234-241.

    Article  Google Scholar 

Download references

Acknowledgments

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. This work was funded by the Laboratory Directed Research and Development Program at LLNL under project tracking code 13-SI-002 and has been assigned the document release ID #LLNL-JRNL-654740.

The authors would like to acknowledge the guidance and expertise of Ms. Mary M. LeBlanc (LLNL) in mechanical characterization techniques and digital image correlation methodology. Dr. Bjørn Clausen and Dr. Thomas A. Sisneros (LANL, Lujan Center) are recognized for their time and expertise in neutron diffraction. The authors also recognize Dr. Bassem el-Dasher, Dr. Robert Ferencz, and Dr. Neil Hodge (LLNL) for their guidance in planning these experiments—and, in particular, Dr. Neil Hodge for melt pool geometry predictive capabilities, as well as Dr. Chandrika Kamath (LLNL) for process optimization expertise and Dr. John Elmer (LLNL) for his advice and expertise. Mr. Gregory J. Larsen and Mr. Paul Alexander are recognized for their drafting efforts and processing expertise, respectively. Dr. Karl Fisher provided the RUS measurements of elastic modulus used in this study.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Amanda S. Wu.

Additional information

Manuscript submitted May 8, 2014.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wu, A.S., Brown, D.W., Kumar, M. et al. An Experimental Investigation into Additive Manufacturing-Induced Residual Stresses in 316L Stainless Steel. Metall Mater Trans A 45, 6260–6270 (2014). https://doi.org/10.1007/s11661-014-2549-x

Download citation

Keywords

  • Residual Stress
  • Digital Image Correlation
  • Additive Manufacturing
  • Tensile Residual Stress
  • Residual Stress Measurement