Skip to main content
Log in

Recrystallization Behavior of a Heavily Deformed Austenitic Stainless Steel During Iterative Type Annealing

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

The study describes evolution of the recrystallization microstructure in an austenitic stainless steel during iterative or repetitive type annealing process. The starting heavily cold deformed microstructure consisted of a dual phase structure i.e., strain-induced martensite (SIM) (43 pct in volume) and heavily deformed large grained retained austenite. Recrystallization behavior was compared with Johnson Mehl Avrami and Kolmogorov model. Early annealing iterations led to reversion of SIM to reversed austenite. The microstructure changes observed in the retained austenite and in the reverted austenite were mapped by electron backscatter diffraction technique and transmission electron microscope. The reversed austenite was characterized by a fine polygonal substructure consisting of low-angle grain boundaries. With an increasing number of annealing repetitions, these boundaries were gradually replaced by high-angle grain boundaries and recrystallized into ultrafine-grained microstructure. On the other hand, recrystallization of retained austenite grains was sluggish in nature. Progress of recrystallization in these grains was found to take place by a gradual evolution of subgrains and their subsequent transformation into fine grains. The observed recrystallization characteristics suggest continuous recrystallization type process. The analysis provided basic insight into the recrystallization mechanisms that enable the processing of ultrafine-grained fcc steels by iterative type annealing. Tensile properties of the processed material showed a good combination of strength and ductility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. R.Z. Valiev, R.K. Islamgaliev, I.V. Alexandrov: Progress in Materials Science, 2000, vol. 45, pp. 103-189.

    Article  Google Scholar 

  2. Nanostructured Materials, Processing, Properties and Application, 2nd ed., C.C. Koch, ed., William Andrew Publisher, Norwich, 2007.

  3. R. Z. Valiev: Metals and Materials International, 2001, vol. 7, pp. 413-20.

    Article  Google Scholar 

  4. R. R. Mulyukov, R. M. Imayev and A. A. Nazarov: J Mater. Sci., 2008, vol. 43, pp. 7257–7263.

    Article  Google Scholar 

  5. H. Gleiter: Acta Mater., 2000, vol. 48, pp.1- 29.

    Article  Google Scholar 

  6. M.A. Meyers, A.Mishra, D.J. Benson: Progress in Materials Science, 2006, vol. 51, pp. 427-556.

    Article  Google Scholar 

  7. M. Dao, L.Lu, R.J. Asaro, J.T.M. De Hosson, E. Ma: Acta Mater., 2007, vol. 55, pp. 4041-4065.

    Article  Google Scholar 

  8. D. Wolf, V.Yamakow,S.R. Phillpot, A. Mukherjee, H. Gleiter: Acta Mater., 2005, vol. 53, pp. 1-40.

    Article  Google Scholar 

  9. K.S. Kumar, H. Van Swygenhoven, S. Suresh: Acta Mater., 2003, vol. 51, pp. 5743-5774.

    Article  Google Scholar 

  10. E. Ma: Scripta Mater., 2003, vol. 49 pp. 663-668.

    Article  Google Scholar 

  11. Y.M. Wang, E. Ma: Acta Mater., 2004, vol. 52, 1699-1709.

    Article  Google Scholar 

  12. T.G. Langdon: Acta Mater., 2013, Vol. 61, pp. 7035-7059.

    Article  Google Scholar 

  13. Kazukuni Hase, Nobuhiro Tsuji: Scripta Mater, 2011, Vol. 65, pp. 404-407.

    Article  Google Scholar 

  14. M. Hamzeh, A. Kermanpur, A. Najafizadeh: Mater. Sci. Eng. A, 2014, Vol. 593, pp. 24-30.

    Article  Google Scholar 

  15. K. Muszka, D. Dziedzic, L. Madej, J. Majta, P.D. Hodgson, E.J. Palmiere: Mater. Sci. Eng. A, 2014, Vol. 610, pp. 290-296.

    Article  Google Scholar 

  16. Yoon-Uk Heo, Dong-Woo Suh, Hu-Chul Lee: Acta Mater., 2014, Vol. 77, pp. 236-247.

    Article  Google Scholar 

  17. D. Jia, Y.M. Wang, K.T.Y. Ramesh, E. Ma, Y.T. Zhu, R.Z. Valiev: Appl Phys Lett., 2001, vol. 79, pp. 611-613.

    Article  Google Scholar 

  18. Y.M. Wang, E. Ma: Mater. Sci. Eng. A, 2004, vol. 375-377, pp. 46-52.

    Article  Google Scholar 

  19. Y. Fukuda, K. Oh-ishi, Z. Horita, T.G. Langdon: Acta Mater., 2002, vol. 50, pp.1359-68.

    Article  Google Scholar 

  20. J. Kim, I. Kim, D.H. Shin: Scripta Mater., 2001, vol. 45, pp. 421-426.

    Article  Google Scholar 

  21. D.H. Shin, I. Kim, J. Kim, K.T. Park: Acta Mater., 2001, vol. 49, pp. 1285-92.

    Article  Google Scholar 

  22. Dierk Raabe, Pyuck-Pa Choi, Yujiao Li, Aleksander Kostka, Xavier Sauvage, Florence Lecouturier, Kazuhiro Hono,Reiner Kirchheim, Reinhard Pippan, and David Embury: MRS Bulletin, 2010, vol. 35, pp. 982-991.

    Article  Google Scholar 

  23. Yuntian Zhu, Ruslan Z. Valiev, Terence G. Langdon, Nobuhiro Tsuji, and Ke Lu : MRS Bulletin, 2010, vol. 35, pp. 977-981.

    Article  Google Scholar 

  24. Tadashi Maki: Stainless steel, Curr Opin Solid State Mat Sci., 1997, vol. 2, pp. 290-295.

    Article  Google Scholar 

  25. Y. Murata, S. Ohashi, Y.Uematsu: ISIJ Intl., 1993, vol. 33, pp. 711-720.

    Article  Google Scholar 

  26. P.J. Cunat and T. Pauly: Proc. 4th Eur. Stainless Steel Sci. & Market Congress, Paris, 2002, pp. 10–18.

  27. J. Pierre: Euro-Inox Handbook of Stainless Steel, 2006, pp. 1–84.

  28. S. Rajsekhara, P.J. Ferreira, L.P. Karjalainen, and A. Kyrolainen: Metall. Mater. Trans. A, 2007, vol. 38A, pp. 1202-10.

  29. Y. Ma, J.-E., Jin, and Y.-K. Lee: Scripta Mater., 2005, vol. 52, pp. 1311–15.

  30. R.D.K. Misra, B. Ravi Kumar, M. Somani, P. Karjalainen: Scripta Mater., 2008, vol. 59, pp. 79-82.

    Article  Google Scholar 

  31. K. Tomimura, S. Takaki and Y. Tokunaga: ISIJ Intl., 1991, Vol. 31, 1431-37.

    Article  Google Scholar 

  32. O. Kwon, Y.K. Lee: J Korean Inst Metals Mater., 1994, vol. 32, 958-63.

    Google Scholar 

  33. K. Tomimira, S. Takaki, S. Tanimoto and Y. Tokunaga: ISIJ Intl., 1991, vol. 31, 721-27.

    Article  Google Scholar 

  34. S. Takaki, K. Tomimura and S. Ueda: ISIJ Intl., 1994, vol. 34, 522-27.

    Article  Google Scholar 

  35. D.L. Johannsen, A. Kyrolainen, and P.J. Ferreira: Metall. Mater. Trans. A, 2006, vol. 37A, pp. 2325–38.

  36. A. Di Schino, M. Barteri, J.M. Kenny: Jr. Mater. Sci. Lett., 2002, vol. 21, 751-53.

    Article  Google Scholar 

  37. C. Herrera, P.L. Plaut, A.F. Padilha: Mater. Sci. Forum, 2007, vol. 550, 423-28.

    Article  Google Scholar 

  38. M. Tokuzane, N. Matsumura, K. Tsuzaki, T. Maki and I. Tamura: Metall. Trans A, 1982, vol. 13A 1379-88.

    Article  Google Scholar 

  39. S. Takaki, S. Tanimoto and Y. Tokunaga: Trans ISIJ, 1985, vol. 25, pp. B223.

    Google Scholar 

  40. A. Rezaee, A. Kermanpur, A. Najafizadeh, M. Moallemi: Mater. Sci. Eng. A, 2011, Vol. 528, pp. 5025-5029.

    Article  Google Scholar 

  41. M. Moallemi, A. Najafizadeh, A. Kermanpur, A. Rezaee: Mater. Sci. Eng. A, 2011, Vol. 530, pp. 378-381.

    Article  Google Scholar 

  42. Birger Karlsson: Mater. Sci. Eng., 1973, vol. 11, pp. 185-93.

    Article  Google Scholar 

  43. S.P. Gupta: Mater. Sci. Eng., 1975, vol. 21, pp. 211-20.

    Article  Google Scholar 

  44. S. Jin, J.W. Morris and V.F. Zackay: Metall. Trans. A, 1975, vol. 6, pp. 141-49.

    Article  Google Scholar 

  45. S. Krishnamurthy and S.P. Gupta: Mater. Sci. Eng., 1977, vol. 30, pp. 155-65.

    Article  Google Scholar 

  46. K. Nakazawa, Y. Kawabe and S. Muneki: Mater. Sci. Eng., 1978, vol. 33, pp. 49-56.

    Article  Google Scholar 

  47. J.N. Wang, Jie Yang, Qiangfei Xia, Yond Wang: Mater. Sci. Eng. A, 2002, vol. 329-331, pp. 118-123.

    Article  Google Scholar 

  48. A. Di Schino, J.M. Kenny, I. Salvatori and G. Abbruzzese: Jr Mater Sci., 2001, vol. 36, pp. 593-601.

    Article  Google Scholar 

  49. W.A. Johnson, R.F. Mehl: AIME Trans., 1939, vol. 135, pp.416-42.

    Google Scholar 

  50. F.J. Humphreys and M. Hatherly: Recrystallization and Related Annealing Phenomena, 2nd ed., Elsevier Ltd., Oxford, 2004.

  51. P.R. Rios, Jr F. Siciliano, H.R.Z. Sandim, R.L. Plaut, A.F. Padilha: Mat Res., 2005, vol.8, pp.225-238.

    Article  Google Scholar 

  52. H. Hu: Trans. AIME, 1962, vol. 224, pp.75-93.

    Google Scholar 

  53. R.A. Oriani: Acta Mater, 1960, vol. 8, pp. 134-135.

    Article  Google Scholar 

  54. H. Fujita: J. Phy. Soc. Japan, 1961, vol. 16, pp. 397.

    Article  Google Scholar 

  55. C.S. Smitt: J. Inst. Metals, 1948, vol. 74, pp. 747-56.

    Google Scholar 

  56. C. James, M. Li: J. Appl. Phy, 1962, vol. 33, pp. 2958-65.

    Article  Google Scholar 

  57. A. Belyakov, T. Sakai, H.Miura, R. Kaibyshev, K. Tsuzaki: Acta Mater., 2002, vol. 50, pp. 1547-1557.

    Article  Google Scholar 

  58. K. Tsuzaki, M. Ikegami, Y. Tomota and T. Maki: ISIJ Inter., 1990, vol. 30, pp. 666-673.

    Article  Google Scholar 

  59. C.C. Koch: Scr. Mater., 2003, vol. 49, pp. 657-662.

    Article  Google Scholar 

  60. J. Gil Sevillano and J. Aldazabal: Scripta Mater., 2004, vol. 51, pp. 795–800.

  61. M. Legros, B.R. Elliott, M.N. Rittner, J.R. Weertman, and K.J. Hemker: Philos. Mag. A, 2000, vol. 80, pp. 1017–26.

  62. V.L. Tellkamp, A. Melmed and E.J. Lavernia: Metall Mater Trans A, 2001, vol. 32A, pp. 2335-2343.

    Article  Google Scholar 

  63. Y. Wang, M. Chen, F. Zhou and E. Ma: Nature, 2002 vol. 419, pp. 912-915.

    Article  Google Scholar 

  64. H. Jin and D.J. Lloyd: Scr Mater., 2004, vol. 50, pp. 1319-1323.

    Article  Google Scholar 

  65. T.S. Wang, F.C. Zhang, M. Zhang, B. Lv: Mater. Sci. Eng. A : 2008,Vol. 485, pp. 456-460.

    Article  Google Scholar 

  66. N. Kumar, R.S. Mishra, C.S. Huskamp, K.K. Sankaran: Scripta Mater., 2011, Vol. 64, pp. 576-579.

    Article  Google Scholar 

  67. K. Sitarama Raju, V. Subramanya Sarma, A. Kauffmann, Z. Hegedűs, J. Gubicza, M. Peterlechner, J. Freudenberger, and G. Wilde: Acta Mater., 2013, vol. 61, pp. 228–38.

  68. B. Raeisinia, C.W. Sinclair, W.J. Poole and C.N. Tome: Modelling Simul. Mater. Sci. Eng., 2008, vol. 16, pp. 025001-15.

    Article  Google Scholar 

  69. B. Ravi Kumar, and Dierk Raabe: Scripta Mater., 2012, vol. 66, pp. 634-637.

    Article  Google Scholar 

Download references

Acknowledgment

The authors are grateful to Director, CSIR-National Metallurgical Laboratory, Jamshedpur, for supporting this work. Authors also wish to record their gratitude to Prof. Dierk Raabe, Max-Planck-Institut für Eisenforschung, Germany, for several valuable input and discussions. Authors wish to thanks Ms. Katja Angenendt and Ms. Monika Nellessen of Max-Planck-Institut für Eisenforschung, for helping in conducting several EBSD experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Ravi Kumar.

Additional information

Manuscript submitted January 23, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ravi Kumar, B., Sharma, S. Recrystallization Behavior of a Heavily Deformed Austenitic Stainless Steel During Iterative Type Annealing. Metall Mater Trans A 45, 6027–6038 (2014). https://doi.org/10.1007/s11661-014-2543-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-014-2543-3

Keywords

Navigation