Skip to main content
Log in

Inertia Friction Welding of Dissimilar Superalloys Mar-M247 and LSHR

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The solid state inertia friction welding (IFW) process was used for the first time to join two dissimilar Ni-based superalloys, LSHR, a powder metallurgy alloy, and Mar-M247, a directionally solidified alloy. Extensive studies of the microstructure, phase composition, re-distribution of the alloying elements between the welded alloys, microhardness, and welding defects were conducted at different distances from the weld interface, and the results were correlated with the loading and friction conditions during IFW. Possible reasons leading to the formation of the welding defects were discussed and directions for the further improvement of the quality of the IFW of these two dissimilar alloys were outlined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. J.H. Perepezko, Science, 326, No. 5956 (2009) 1068-1069.

    Article  Google Scholar 

  2. D.M. Dimiduk, J.H. Perepezko, MRS Bull 28 (2003) 639–645.

    Article  Google Scholar 

  3. R.C. Reed, The Superalloys: Fundamentals and Applications, Cambridge University Press, Cambridge, UK, 2006.

    Book  Google Scholar 

  4. W.S. Walston, J.C. Schaeffer, W.H. Murphy, in Superalloys 1996, TMS, Warrendale, PA, 1996, pp. 9–18.

    Google Scholar 

  5. RV Miner, TP Gabb, J Gayda, KJ Hemker, Metall. Trans. A, 17A (1986) 507-512.

    Article  Google Scholar 

  6. D. Siebörger, H. Knake, U. Glatzel, Mater. Sci. Eng. A 268 (2001) 26-33.

    Article  Google Scholar 

  7. S. Walston, A. Cetel, R. MacKay, K. O’Hara, D. Duhl, and R. Dreshfield: Superalloys 2004, TMS, Warrendale, PA, 2004, pp. 15–24.

  8. S. Wlodek, M. Kelly, D. Alden, Superalloys-1996, TMS, Materials Park, PA, 1996, 129–136.

    Book  Google Scholar 

  9. J. Hurst, Materials and Structures Research for Gas Turbine Applications Within the NASA Subsonic Fixed Wing Project, NASA/TM-2011-216747, NASA Glenn Research Center, Cleveland, OH, 2011.

    Google Scholar 

  10. J.N. DuPont, J.C. Lippold, S.D. Kiser, Welding Metallurgy and Weldability of Nickel-Base Alloys, John Wiley & Sons, Hoboken, New Jersey, 2009.

    Book  Google Scholar 

  11. R. Kovacivic ed.: Welding Processes, InTech, Rijeka, Croatia, 2012.

  12. C.T. Sims,W.C. Hagel, The Superalloys, John Wiley, New York, 1972.

    Google Scholar 

  13. J.K. Tien, T. Caulfield, Superalloys, Supercomposites and Superceramics, Academic Press, London, 1989.

    Google Scholar 

  14. M. Preuss, J.W.L. Pang, P.J. Withers, G.J. Baxter, Metall. Mater. Trans. 33A (2002) 3227–3234.

    Article  Google Scholar 

  15. M. Preuss, P.J. Withers, G.J. Baxter, Mater. Sci. Eng. A 437 (2006) 38-45.

    Article  Google Scholar 

  16. Z.W. Huang, H.Y. Li, M. Preuss, M. Karadge, P. Bowen, S. Bray, and G. Baxter, Metall. Mater. Trans. 38A (2007) 1608-1620.

    Article  Google Scholar 

  17. Z.W. Huang, H.Y. Li, G. Baxter, S. Bray, P. Bowen, Adv. Mater. Res. 278 (2011) 440-445.

    Article  Google Scholar 

  18. J. Gayda, Alloy 10: A 1300 F Disk Alloy, NASA/TM-2000-210358, NASA Glenn Research Center, Cleveland, OH, 2000.

    Google Scholar 

  19. T.P. Gabb, J. Gayda, P.T. Kantzos, T. Biles, W. Konkel, The tensile properties of advanced Nickel-based disk superalloys during quenching heat treatments, NASA/TM-2001-211218, NASA Glenn Research Center, Cleveland, OH, 2001.

    Google Scholar 

  20. J.R. Kattus, Ni-Base Alloys: Mar-M247 (Code 4218), Aerospace Structural Metals Handbook, Purdue Research Foundation, West Lafayette, Indiana, 1999.

    Google Scholar 

  21. S.L. Semiatin, K.E. MacClary, A.D. Rollett, C.G. Roberts, E.J. Payton, F. Zhang, T.P. Cabb, Metall. Mater. Trans. A 44 (2012) 2778-2798.

    Google Scholar 

  22. P.R.A.A. Silva, R. Baldan, C.A. Nunes, C.C. Caelho, A.M.S. Costa, Mater. Characterization 75 (2013) 214-219.

    Article  Google Scholar 

  23. D. Rice, P. Kantzos, B. Hann, J. Neumann, and R. Helmink: Superalloys 2008, TMS, Materials Park, PA, 2008, pp. 139–47.

  24. D. Workman and J. Gould, Development of Prototype Joints between Cast Superalloy Blades and Powder Metallurgy Disks, Edison Welding Institute, Columbus, OH, 2012.

    Google Scholar 

  25. V.I. Vill, Friction Welding of Metals, American Welding Society, New York, NY, 1962, 114 p.

    Google Scholar 

  26. P. N. Quested, R. F. Brooks, L. Chapman, R. Morrell, Y. Youssef, K.C. Mills, Mater. Sci. technol. 25 (2009) 154-162.

    Article  Google Scholar 

  27. R.A. Rick, A.J. Porter, R.C. Ecob, Acta Metall. 31 (1983) 43-53.

    Article  Google Scholar 

  28. E. Orowan, Proc. Inst. Mech. Eng. 150 (4) (1943, 140-167.

    Article  Google Scholar 

  29. P.J. Blau, S.D. Henry, C.M. Davidson, T.B. Zorc, and D.R. Levick, eds.: Friction, Lubrication and Wear Technology, ASM Handbook, vol. 18, ASM International, Materials Park, OH, 1992.

  30. L.B. Yang, J.C. Gebelin, R.C. Reed, Mater. Sci. Techn. 27 (2011) 1249-1264.

    Article  Google Scholar 

  31. F.H. Daus: Ph.D. Thesis, University of Birmingham, Birmingham, UK, 2009.

  32. L.B. Yang: PhD. Thesis, University of Birmingham, Birmingham, UK, 2010.

  33. A. Nadai, J. Appl. Phys. 8 (1937) 205-213.

    Article  Google Scholar 

  34. L. Wang, M. Preuss, P.J. Withers, G. Baxter, P. Wilson, Metall. Mater. Trans. 36B (2005) 513-523.

    Article  Google Scholar 

  35. F. Daus, H.Y. Li, G. Baxter, S. Bray, P. Bowen, Mater. Sci. Techn. 23 (2007) 1424-1432.

    Article  Google Scholar 

  36. O. Midling, O. Grong, Acta Metall Mater. 42 (1994) 1595-1609.

    Article  Google Scholar 

  37. H. Mei, Y. Liu, L. Cheng, J. Mater. Sci. 47 (2012) 2278-2283.

    Article  Google Scholar 

  38. J. Evans, J. Mater. Eng. Perf. 19 (2010) 1001-1004.

    Article  Google Scholar 

  39. D. Landolt, Corrosion and Surface Chemistry of Metals, EPFL Press, Lausanne, Switzerland, 2003.

    Google Scholar 

Download references

Acknowledgments

Inertia friction welding was conducted at the Edison Welding Institute, Columbus, Ohio. The authors thank Mr. D. Workman (EWI) for technical help. Discussions and valuable comments from Dr. S.S. Babu are greatly appreciated. ONS acknowledges financial support through the Air Force on-site contract FA8650-10-D-5226 conducted by UES, Inc., Dayton, OH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oleg N. Senkov.

Additional information

Manuscript submitted January 16, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Senkov, O.N., Mahaffey, D.W., Semiatin, S.L. et al. Inertia Friction Welding of Dissimilar Superalloys Mar-M247 and LSHR. Metall Mater Trans A 45, 5545–5561 (2014). https://doi.org/10.1007/s11661-014-2512-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-014-2512-x

Keywords

Navigation