Skip to main content
Log in

Microstructural Stability and Hot Deformation of γγ′–δ Ni-Base Superalloys

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Nickel-base superalloys exhibit excellent high-temperature mechanical and physical properties and remain the first choice for structural components in advanced gas turbine engines for the aerospace propulsion and power generation applications. In response to the increasing demand for more efficient solutions and tighter requirements linked to gas turbine technologies, the properties of nickel-base superalloys can be improved by modification of their thermo-mechanical and/or compositional attributes. Recent investigations have revealed the potential use of ternary eutectic γγ′–δ Ni-base superalloys in advanced gas turbines due to high temperature mechanical properties that are comparable to state-of-the-art polycrystalline Ni-base superalloys. With properties largely dependent on microstructural strengthening mechanisms, both the composition and thermo-mechanical processing parameters of this novel class of alloys need to be optimized concurrently. The hot deformation characteristics of four γγ′–δ Ni-base superalloys with varying levels of Nb were evaluated at temperatures and strain rates between 1353 K and 1433 K (1080 °C and 1160 °C) and 0.01 to 0.001/s, respectively. Evidence of dislocation-based plasticity was observed following deformation at low temperatures and high strain rates, while high temperatures and low strain rates promoted superplasticity in these alloys. The extent of the microstructural changes and the magnitude of the cavitation damage which occurred during deformation was found to vary as a function of the alloy composition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. T.M. Pollock and S. Tin: J. Propul. Power, 2006, vol. 22.2, pp. 361-74.

    Article  Google Scholar 

  2. D. Furrer and H. Fecht: JOM, 1999, vol. 51.1, pp. 14-17.

    Article  Google Scholar 

  3. C.T. Sims, N. S. Stoloff, and W.C. Hagel: Superalloys II, Wiley, New York, NY, 1987.

    Google Scholar 

  4. R. F. Decker and C. T. Sims: The Metallurgy of Nickel-base Superalloys, Paul D. Merica Research Laboratory, New York, NY, 1972.

    Google Scholar 

  5. R.R. Unocic, G.B. Viswanathan, P.M. Sarosi, S.Karthikeyan, J.Li, and M.J. Mills: Mater. Sci. Eng. A, 2008, vol. 483-484, pp. 25-32.

    Article  Google Scholar 

  6. R.R. Unocic, L. Kovarik, C. Shen, P.M. Sarosi, Y. Wang, J. Li, S. Ghosh, and M. J. Mills: Superalloys 2008, TMS, Warrendale, PA, 2008.

    Google Scholar 

  7. D. Locq, P. Caron, S. Raujol, F. Pettinari-Sturmel, A. Coujou, and N. Clément: Superalloys 2008, TMS, Warrendale, PA, 2004.

    Google Scholar 

  8. R.M. Forbes Jones and L.A. Jackman: JOM, 1999, vol. 51, pp. 27-31.

    Article  Google Scholar 

  9. A.D. Cetel, M. Gell, and J.W. Glatz: Conference on In Situ Composites III, Boston, MA, 1978, pp. 292–302.

  10. R.W. Farley: The Superalloys, Wiley, New York, NY, 1972.

    Google Scholar 

  11. H.R. Gray: Material Show and Conference, NASA TM 73714, 1977.

  12. R.L. Ashbrook: Meeting on Directionally Solidified In Situ Composites, NASA TM X-71514, 1974.

  13. J. Stringer, D.M. Johnson, and D.P. Whittle: Oxid. Met., 1978, vol. 12.3, pp. 257-71.

    Article  Google Scholar 

  14. D.M. Johnson, D.P. Whittle, and J. Stringer: Oxid. Met., 1978, vol. 12.3, pp. 273-91.

    Article  Google Scholar 

  15. R.C. Reed: The Superalloys: Fundamentals and Applications, Cambridge University Press, New York, NY, 2006, pp. 372.

    Book  Google Scholar 

  16. J. Tiley, G.B. Viswanathan, R. Srinivasan, R. Banerjee, D.M. Dimiduk, and H.L. Fraser: Acta Mater., 2009, vol. 57-8, pp. 2538-49.

    Article  Google Scholar 

  17. Y. Gao, J.S. Stölken, M. Kumar, and R.O. Ritchie: Acta Mater., 2007, vol. 55-9, pp. 3155-67.

    Article  Google Scholar 

  18. C. Stöcker, M. Zimmermann, H.-J. Christ, Z.-L. Zhan, C. Cornet, L.G. Zhao, M.C. Hardy, and J. Tong: Mater. Sci. Eng. A, 2009, vol. 518, pp. 27-34.

    Article  Google Scholar 

  19. Y.F. Gu, C. Cui, D. Ping, H. Harada, T. Fukuda, and J. Fujioka: Mater. Sci. Eng. A, 2009, vol. 510-511, pp. 250-5.

    Article  Google Scholar 

  20. C. Cui, Y. Gu, H. Harada, and A. Sato: Metall. Mater. Trans. A, 2005, vol. 36, pp. 2921-27.

    Google Scholar 

  21. M. Xie, R.C. Helmink, and S. Tin: Metall. Mater. Trans. A, 2011, vol. 43, pp. 1259-67.

    Google Scholar 

  22. M. Xie, R.C. Helmink, and S. Tin: Superalloys 2012, Wiley, Hoboken, NJ, 2012, pp. 633–42.

    Book  Google Scholar 

  23. S. Tin, A. Rodriguez, A. DiScuillo-Jones, R.C. Helmink, and R. Hardy: Superalloys 2012, Wiley, Hoboken, NJ, 2012, pp. 833–41.

    Book  Google Scholar 

  24. X. Xie, G. Wang, J. Dong, C. Xu, W-D. Cao, and R. Kennedy: Superalloys 718, TMS, Warrendale, PA, 2005.

    Google Scholar 

  25. M. Detrois, R.C. Helmink, and S. Tin: Mater. Sci. Eng. A, 2013, vol. 586, pp. 236-44.

    Article  Google Scholar 

  26. S. Azadian, L.-Y. Wei, and R. Warren: Mater. Charact., 2004, vol. 53, pp. 7-16.

    Article  Google Scholar 

  27. H. M. Lalvani, M.A. Rist, and J.W. Brooks: Adv. Mater. Res., 2010, vol. 89-91, pp. 313-8.

    Article  Google Scholar 

  28. Y. Wang, W.Z. Shao, L. Zhen, and B.Y. Zhang: Mater. Sci. Eng. A, 2011, vol. 528, pp. 3218-27.

    Article  Google Scholar 

  29. G.K. Bouse: Superalloys 1996, TMS, Warrendale, PA, 1996.

    Google Scholar 

  30. S.M. Seo, I.S. Kim, J.H. Lee, C.Y. Jo, H. Miyahara, and K. Ogi: Metall. Mater. Trans. A, 2007, vol. 38A, pp. 883-93.

    Article  Google Scholar 

  31. X. Xie, C. Xu, G. Wang, J. Dong, W.-D. Cao, R. Kennedy: Superalloys 718, TMS, Warrendale, PA, 2005.

    Google Scholar 

Download references

Acknowledgments

Financial support for this work was provided by Rolls-Royce North American Technologies, Rolls-Royce Corporation, Rolls-Royce plc., and NSF-DMR-1006953.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Detrois.

Additional information

Manuscript submitted October 22, 2013.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Detrois, M., Helmink, R.C. & Tin, S. Microstructural Stability and Hot Deformation of γγ′–δ Ni-Base Superalloys. Metall Mater Trans A 45, 5332–5343 (2014). https://doi.org/10.1007/s11661-014-2499-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-014-2499-3

Keywords

Navigation