Skip to main content
Log in

Effect of Multi-Scale Thermoelectric Magnetic Convection on Solidification Microstructure in Directionally Solidified Al-Si Alloys Under a Transverse Magnetic Field

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The influence of a transverse magnetic field (B < 1 T) on the solidification structure in directionally solidified Al-Si alloys was investigated. Experimental results indicate that the magnetic field caused macrosegregation, dendrite refinement, and a decrease in the length of the mushy zone in both Al-7 wt pct Si alloy and Al-7 wt pct Si-1 wt pct Fe alloys. Moreover, the application of the magnetic field is capable of separating the Fe-rich intermetallic phases from Al-7 wt pct Si-1 wt pct Fe alloy. Thermoelectric magnetic convection (TEMC) was numerically simulated during the directional solidification of Al-Si alloys. The results reveal that the TEMC increases to a maximum (\( u_{\rm{max} } \)) when the magnetic field reaches a critical magnetic field strength (\( B_{\rm{max} } \)), and then decreases as the magnetic field strength increases further. The TEMC exhibits the multi-scales effects: the \( u_{\rm{max} } \) and \( B_{\rm{max} } \) values are different at various scales, with \( u_{\rm{max} } \) decreasing and \( B_{\rm{max} } \) increasing as the scale decreases. The modification of the solidification structure under the magnetic field should be attributed to the TEMC on the sample and dendrite scales.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. E.L. Rooy: Metals Handbook, vol. 15, ASM International, Materials Park, Ohio, 1988, pp. 743–70.

  2. Timpel M, Wanderka N, Murty BS, Banhart J. Acta Materialia 2010; 58: 6600–08.

    Article  Google Scholar 

  3. Turchin AN, Zuijderwijk M, Pool J, Eskin DG, Katgerman L. Acta Materialia 2007: 55: 3795–3801.

    Article  Google Scholar 

  4. Osawa Y, Takamori S, Kimura T, Minagawa K, Kakisawa H. Materials Transactions 2007; 48: 2467–75.

    Article  Google Scholar 

  5. Steinbach S, Ratke L. Materials Science and Engineering A 2005; 413: 200–04.

    Article  Google Scholar 

  6. Yasuda H, Ohnaka I, Fujimoto S, Takezawa N, Tsuchiyama A, Nakano T, Uesugi K. Scripta Materialia 2006; 54: 527–32.

    Article  Google Scholar 

  7. Li L, Zhang YD, Esling C, Jiang HX, Zhao ZH, Zuo YB, Cui JZ. Journal of Crystal Growth 2012; 339: 61–69.

    Article  Google Scholar 

  8. Li X, Fautrelle Y, Ren ZM. Acta Materialia 2007; 55: 3803–13.

    Article  Google Scholar 

  9. Beckermann C. Int Mat Rev 2002; 47: 243–61.

    Article  Google Scholar 

  10. Kurz W, Fisher DJ. Fundamentals of Solidification, Trans Tech Publ., Ackermannsdorf, (1989).

    Google Scholar 

  11. Flemings MC, Nereop G E. Trans AIME 1967; 239: 1449–61.

    Google Scholar 

  12. Davidson PA, Boysan F. Appl Sci Res 1987; 44: 241–59.

    Article  Google Scholar 

  13. Hainke M, Friedrich J, Müller G. J Mater Sci 2004; 39: 2011–2475.

    Article  Google Scholar 

  14. Heinrich J C, Poirier D R. Comptes Rendus Mecanique 2004; 332: 429–45.

    Article  Google Scholar 

  15. Poirier D R. Metall Trans B 1987; 18B: 245–49.

    Article  Google Scholar 

  16. Churchill S W. Viscous Flow, Butterworths, Boston (1988).

    Google Scholar 

  17. Dantzig J, Rappaz M. Solidification, EPFL Press, Lausanne, Switzerland (2009).

    Book  Google Scholar 

  18. Li X, Gagnoud A, Ren ZM, Fautrelle Y, Moreau R. Acta Materialia 2009; 57: 2180–97.

    Article  Google Scholar 

  19. Shercliff JA. J. Fluid Mech. 1979; 91: 235–51.

    Article  Google Scholar 

  20. Li X, Fautrelle Y, Ren ZM. Acta Materialia 2007; 55: 1377–86.

    Article  Google Scholar 

  21. K.A. Jackson, J.D. Hunt, D.R. Uhlmann, and T.P. Seward III: Trans TMS-A1ME, 1966, vol. 236, pp. 149−58.

  22. Curreri PA, Lee JE, Stefanescu DM. Metall Trans A 1988; 19A: 2671–76.

    Article  Google Scholar 

  23. Shankar S, Riddle YW, Makhlouf M M. Acta Materialia 2004; 52: 4447–60.

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported partly by the European Space Agency through the Bl-inter 09_473220, the National Natural Science Foundation of China (Nos. 51271109 and 51171106), and the Program for Professor of Special Appointment (Eastern Scholar) at Shanghai Institutions of Higher Learning. The authors are indebted to Prof. Thierry Duffar in EPM/CNRS, Grenoble, for helpful and fruitful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xi Li.

Additional information

Manuscript submitted October 30, 2013.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Du, D., Gagnoud, A. et al. Effect of Multi-Scale Thermoelectric Magnetic Convection on Solidification Microstructure in Directionally Solidified Al-Si Alloys Under a Transverse Magnetic Field. Metall Mater Trans A 45, 5584–5600 (2014). https://doi.org/10.1007/s11661-014-2496-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-014-2496-6

Keywords

Navigation