Advertisement

Metallurgical and Materials Transactions A

, Volume 46, Issue 10, pp 4539–4547 | Cite as

Microstructural Effects on Damage Nucleation in Shock-Loaded Polycrystalline Copper

  • Andrew David BrownEmail author
  • Leda Wayne
  • Quan Pham
  • Kapil Krishnan
  • Pedro Peralta
  • Sheng-Nian Luo
  • Brian M. Patterson
  • Scott Greenfield
  • Darrin Byler
  • Kenneth J. McClellan
  • Aaron Koskelo
  • Rob Dickerson
  • Xianghui Xiao
Symposium: Dynamic Behavior of Materials VI

Abstract

Polycrystalline copper samples with varying thermomechanical histories were shock loaded to induce spall via laser-driven plate impacts at low shock stress (<6 GPa). Electron backscattering diffraction was used to obtain statistics on grain boundary (GB) misorientations within the spall plane and at all GBs that contained damage. Specimens with pre-existing plastic deformation showed dominant intergranular damage at boundaries in the 25 to 50 deg misorientation range, while heat-treated samples had mixed trans- and intergranular damage with a lessened misorientation influence at damaged GBs. 3-D X-ray tomography data were used to analyze global volume statistics and qualitatively inspect the shape of voids present in samples of varying thermomechanical histories. It was found that annealed samples had a mixed mode of spherical- and sheet-like voids, indicative of trans- and intergranular damage, respectively, and the microstructure with the highest number of Σ3 twin boundaries had the highest concentration of spherical voids. Data from a plastically pre-strained sample showed a dominance of needle- and sheet-like voids, indicating primarily intergranular damage due to the higher strength of the bulk material forcing the damage to nucleate at weaker defects, in this case GBs.

Keywords

Grain Boundary Misorientation Angle Spall Strength Void Shape Thermomechanical History 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This research work was funded by LANL under LDRD # 20060021DR, and by the Department of Energy, NNSA, under SSAA Grants # DE-FG52- 06NA26169, DE-FG52-10NA29653., and DE-NA0002005 and APS General User Proposal 35561. Eric Loomis, Pat Dickerson (LANL), Damian Swift (LLNL), David Wright, and Dallas Kingsbury (ASU) are thanked for their help during the various phases of the research work. Access to the TRIDENT Facility & Electron Microscopy Laboratory at LANL, Pavel Shevchenko at APS 2-BM, as well as the Center for High-Resolution Electron Microscopy and the Mechanical Testing Laboratory at ASU is gratefully acknowledged.

References

  1. 1.
    D.R. Curran, L. Seaman, D.A. Shockey, Phys. Rep. 147 (1897), pp. 253–388.CrossRefGoogle Scholar
  2. 2.
    D.E. Grady, J. Mech. Phys. Sol. 36 (1988), pp. 353–84.CrossRefGoogle Scholar
  3. 3.
    M.A. Meyers, Dynamic Behavior of Materials, John Wiley & Sons, New York, 1994.CrossRefGoogle Scholar
  4. 4.
    R. Vignjevic, N.K. Bourne, J.C.F. Millet, T. De Vuyst, J. Appl. Phys. 92 (2002), pp. 4342–48.CrossRefGoogle Scholar
  5. 5.
    R.W. Minich, J.U. Cazamias, M. Kumar, A.J. Schwartz, Metall. Mater. Trans. A 35A (2004), pp. 2663–73.CrossRefGoogle Scholar
  6. 6.
    B.L. Henrie, T.A. Mason, and J.F. Bingert: in Shock Compression of Condensed Matter 2005, M.D. Furnish, M. Elert, T.P. Russell, and C.T. White, eds., American Institute of Physics, Melville, NT, 2005.Google Scholar
  7. 7.
    C. Czarnota, N. Jacques, S. Mercier, A. Molinari, J. Mech. Phys. Sols. 56 (2008), pp. 1624–50.CrossRefGoogle Scholar
  8. 8.
    P. Peralta, S. DiGiacomo, S. Hashemian, S.N. Luo, D. Paisley, R. Dickerson, E. Loomis, D. Byler, K.J. McClellan, and H.D’Armas: Int. J. Damage, 2009, vol. 18, pp. 393–413.Google Scholar
  9. 9.
    L. Wayne, K. Krishnan, S. DiGiacomo, N. Kovvali, P. Peralta, S.N. Luo, S. Greenfield, D. Byler, D. Paisley, K.J. McClellan, A. Koskelo, and R. Dickerson: Scr. Mater., 2010, vol. 63, pp. 1065–68.Google Scholar
  10. 10.
    J.P. Escobedo, D. Dennis-Koller, E.K. Cerreta, B.M Patterson, C.A. Bronkhorst, B.L. Hansen, D. Tonks, and R.A. Lebensohn: J. Appl. Phys., 2011, vol. 110, p. 033513.Google Scholar
  11. 11.
    J.P. Escobedo, E.K. Cerreta, D. Dennis-Koller, JOM 66 (2014), pp. 156–64.CrossRefGoogle Scholar
  12. 12.
    A. Brown, K. Krishnan, L. Wayne, P. Peralta, S.N. Luo, D. Byler, and B. Patterson: ASME IMECE, San Diego, CA, 2013, p. 65642.Google Scholar
  13. 13.
    W. Han, Q. An, S.N. Luo, T. Germann, D. Tonks, W. Goddard, Phys. Rev. B 85 (2012), pp. 024107.CrossRefGoogle Scholar
  14. 14.
    E.Q. Lin, H.J. Shi, L.S. Niu, E.Z. Jin, Comput. Mater. Sci. 59 (2012), pp. 94–100.CrossRefGoogle Scholar
  15. 15.
    S.J. Fensin, J.P. Escobedo, C. Brandl, E.K. Cerreta, G.T. Gray III, T.C. Germann, S.M. Valone, Acta Mater. 64 (2014), pp. 113–22.CrossRefGoogle Scholar
  16. 16.
    J.F. Bingert, B.L. Henrie, D.L. Worthington, Metall. Mater. Trans. A 38A (2007), pp. 1712–21.CrossRefGoogle Scholar
  17. 17.
    A.P. Sutton, R.W. Ballufi, Interfaces in Crystalline Materials, Oxford University Press, New York, 1995.Google Scholar
  18. 18.
    N.L. Johnson, Biometrika 36 (1949), pp. 149–76.CrossRefGoogle Scholar
  19. 19.
    H.H. Ku, J. Res. Nat. Bur. Stand. 70C (1966), pp. 263–73.Google Scholar
  20. 20.
    B.M Patterson, J.P. Escobedo, D. Dennis-Koller, E. Cerreta, Microsc. Microanal. 18 (2012), pp. 390–98.CrossRefGoogle Scholar
  21. 21.
    A.L. Stevens, L. Davidson, and W.E. Warren: J. Appl. Phys., 1972, vol. 43, pp. 4922–27.Google Scholar
  22. 22.
    V. Randle, Interf. Sci. 10 (2002), pp. 271–77.CrossRefGoogle Scholar
  23. 23.
    J.K. MacKenzie, Biometrika 45 (1958), pp. 229–40.CrossRefGoogle Scholar
  24. 24.
    D.G. Brandon, Acta Metall. 14 (1966), pp. 1479–84.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2014

Authors and Affiliations

  • Andrew David Brown
    • 1
    Email author
  • Leda Wayne
    • 1
  • Quan Pham
    • 1
  • Kapil Krishnan
    • 1
  • Pedro Peralta
    • 1
  • Sheng-Nian Luo
    • 2
  • Brian M. Patterson
    • 3
  • Scott Greenfield
    • 3
  • Darrin Byler
    • 3
  • Kenneth J. McClellan
    • 3
  • Aaron Koskelo
    • 3
  • Rob Dickerson
    • 3
  • Xianghui Xiao
    • 4
  1. 1.Ira A. Fulton Schools of EngineeringArizona State UniversityTempeUSA
  2. 2.Peac Institute of Multiscale SciencesChengduP.R. China
  3. 3.Los Alamos National LaboratoryLos AlamosUSA
  4. 4.Argonne National LaboratoryArgonneUSA

Personalised recommendations