Abstract
In this paper, the effect of strain rate (in the domain of 0.001 to 10 s−1) on dynamic recrystallization (DRX) kinetics in a nitrogen-enhanced 316L(N) austenitic stainless steel during high temperature [≥1123 K (≥850 °C)] deformation is reported. In the low strain rate domain (i.e., <0.1 s−1), the DRX is predominantly governed by higher growth of DRX grains resulting in a higher DRX fraction and larger DRX grain size. On the other hand, DRX at higher strain rates (i.e., ≥1 s−1) is mainly controlled by higher nucleation resulting in higher DRX fraction with a finer grain size. In the intermediate strain rate regime of 0.1 s−1, sluggish kinetics of DRX is observed since neither the nucleation nor the growth of DRX grains is predominant. The annealing twinning event, which may accelerates the DRX kinetics, is also observed to occur more frequently during the low and high strain rate deformations.
This is a preview of subscription content, access via your institution.










Notes
The GOS is average difference in orientation between the average grain orientation and all measurements in a grain.[36]
In KAM, the misorientation between a grain at the center of the kernel and all points at the perimeter of the kernel are measured whereas in LAM, the average misorientations between all neighboring points within the kernel area are measured and the average is calculated.
References
J. G. Kumar, M. Chowdary, V. Ganesan, R.K. Paretkar, K.B.S. Rao, and M.D. Mathew: Nuc. Eng. Des., 2010, vol. 240, pp. 1363–1370.
J.B. Vogt: J. Mater. Proc. Technol., 2001, vol. 117, pp. 364-369.
K.H. Lo, C.H. Shek, and J.K.L. Lai, Mater. Sci. Eng. R, 2009, vol. 65, pp. 39-104.
M.G. Pujar, U. K. Mudali, and S.S. Singh, Corros. Sci., 2011, vol. 53, pp. 4178–86.
R.W. Cahn, and P. Haasen: Physical Metallurgy, Vol. III, Cambridge University Press, New York, NY, 1996.
D. Ponge, and G. Gottstein: Acta Mater., 1998, vol. 46, pp. 69-80.
H. Miura, T. Sakai, R. Mogawa, and G. Gottstein: Scripta Mater., 2004, vol. 51, pp. 671–675.
A. Dehghan-Manshadi, M.R. Barnett, and P.D. Hodgson: Metall. Mater. Trans. A, 2008, vol. 39A, pp. 1359–70.
S. Mandal, S.K. Mishra, A. Kumar, I. Samajdar, P.V. Sivaprasad, T. Jayakumar and B. Raj: Phil. Mag., 2008, vol. 88, pp. 883–97.
D.G. Cram, X.Y. Fang, H.S. Zurob, Y.J.M. Bréchet, C.R. Hutchinson, Acta Mater., 2012, vol. 60, pp. 6390–6404.
A. Belyakov, K. Tsuzaki, H. Miura, and T. Sakai: Acta Mater., 2003, vol. 51, pp. 847–861.
T. Sakai, and J.J. Jonas: Acta Metall., 1984, vol. 32, pp. 189-209.
X. Wang, E. Brunger, and G. Gottstein: Scripta Mater., 2002, vol. 46, pp. 875–80.
A. Gholinia, I. Brough, J. Humphreys, D. McDonald, and P. Bate: Mater. Sci. Technol., 2010, vol. 26, pp. 685.
S. Mandal, A.K. Bhaduri, and V.S. Sarma: Metal. Mater. Trans. A, 2012, vol. 43, pp. 2056 -2068.
P. Karduck, G. Gottstein, and H. Mecking: Acta Metall., 1983, vol. 31, pp. 1525–36.
P. Poelt, C. Sommitsch, S. Mitsche, and M. Walter: Mater. Sci. Eng. A, 2006, vol. 420, pp. 306-314.
H. Beladi, P. Cizek, and P.D. Hodgson: Metal. Mater. Trans. A, 2009, vol. 40, pp. 1175 – 1189.
T. Sakai, A. Belyakov, R. Kaibyshev, H. Miura, and J.J. Jonas: Prog. Mater. Sci., 2014, vol. 60, pp. 130–207.
S. Mandal, P.V. Sivaprasad, and V. Subramanya Sarma: Mater. Manuf. Process., 2010, vol. 25, pp. 54–59.
R. Kapoor, B. Paul, S. Raveendra, I. Samajdar, and J.K. Chakravartty: Metal. Mater. Trans. A, 2009, vol. 40, pp. 818-827.
S. Mandal, P.V. Sivaprasad, and R.K. Dube: J. Mater. Sci., 2007, vol. 42, pp. 2724-2734.
S. Mandal, A.K. Bhaduri, and V.S. Sarma: Metal. Mater. Trans. A, 2012, vol. 43, pp. 410 – 414.
Y. Wang, W.Z. Shao, L. Zhen, L. Yang, and X.M. Zhang: Mater. Sci. Eng. A, 2008, vol. 497, pp. 479-486.
H. Miura, M. Ozama, R. Mogawa, and T. Sakai: Scripta Mater., 2003, vol. 48, pp. 1501-1505.
G. Qingmiao, L. Defu, P. Haijian, G. Shengli, H. Jie, and D. Peng: Rare Met., 2012, Vol. 31, pp. 215–20.
U. Andrade, M.A. Meyers, K.S. Vecchio, and A.H. Chokshi: Acta Metall. Mater., 1994, vol. 42, pp. 3183 – 3195.
Y. Han, D. Zou, Z. Chen, G. Fan, and W. Zhang: Mater. Charac. 2011, vol. 62, pp. 198 – 203.
S. Mitsche, C. Sommitsch, D. Huber, M. Stockinger, and P. Poelt: Mater. Sci. Eng. A, 2011, vol. 528, pp. 3754-3760.
Y. Cao, H. Di, J. Zhang, J. Zhang, T. Ma, and R.D.K. Misra: Mater. Sci. Eng. A, 2013, vol. 585, pp. 71-85.
H.Q. Sun, Y.-N. Shi, M.-X. Zhang, and K. Lu: Acta Mater., 2007, vol. 55, pp. 975 - 982.
J. Favre, Y. Koizumi, A. Chiba, D. Fabregue, and E. Maire: Metall. Mater. Trans A, 2013, vol. 44, pp. 2819-2830.
D.G. Brandon, Acta Metall., 1966, vol. 14, pp. 1479–84.
S. Mandal, A.K. Bhaduri, and V.S. Sarma: J. Mater. Sci., 2011, vol. 46, pp. 275 – 284.
D. Samantaray, S. Mandal, V. Kumar, S.K. Albert, A.K. Bhaduri, and T. Jayakumar: Mater. Sci. Eng. A, 2012, Vol. 552, pp. 236–44.
S. Mandal, A.K. Bhaduri, and V.S. Sarma: Metal. Mater. Trans. A, 2011, vol. 42, pp. 1062 – 1072.
R.L. Goetz, and S.L. Semiatin: J. Mater. Eng. Perform., 2001, vol. 10, pp. 710–717.
M.C. Mataya, and V.E. Sackschewsky: Metall. Mater. Trans A, 1994, vol. 41, pp. 2737–2752.
A. Banerjee, S. Raju, R. Divakar, and E. Mohandas: Int. J. Thermophys., 2007, Vol. 28, 97–108.
G. Owen and V. Randle: Scripta Mater., 2006, vol. 55, pp. 959–62.
H. Gleiter: Acta Metall., 1969, vol. 17, pp. 1421–28.
S. Mahajan, C.S. Pande, M.A. Imam, and B.B. Rath: Acta Mater., 1997, vol. 45, pp. 2633-2638.
W. Roberts, and B. Ahlblom: Acta Metal., 1978, vol. 26, pp. 801-813.
I. Mejia, A. Bedolla-Jacuinde, C. Maldonado, and J.M. Cabrera: Mater. Sci. Eng. A, 2011, vol. 528, pp. 4133–4140.
M. Shaban, and B. Eghbali: Mater. Sci. Eng. A, 2010, vol. 527, pp. 4320–4325.
T. Sakai, and M. Ohashi: Mater. Sci. Technol., 1990, vol. 6, pp. 1251-1257.
J.E. Bailey, and P.B. Hirsch: Proc R Soc A, 1962, vol. 267, pp. 11-30.
D.G. Cram, H.S. Zurob, Y.J.M. Brechet, and C.R. Hutchinson: Acta Mater., 2009, vol. 57, pp. 5218–5228.
H.S. Zurob, Y. Brechet, and J. Dunlop: Acta Mater., 2006, vol. 54, pp. 3983–3990.
F.J. Humphreys, and M. Hatherly: Recrystallization and Related Annealing Phenomena, Elsevier, Oxford, 2004.
C.S. Pande, M.A. Imam, and B.B. Rath, Metall. Trans. A, 1990, vol. 21A, pp. 2891–96.
W. Wang, F. Brisset, A.L. Helbert, D. Solas, I. Drouelle, M.H. Mathon, and T. Baudin, Mater. Sci. Eng. A, 2014, vol. 589, pp. 112–18.
A.M. Wusatowska-Sarnek, H. Miura, and T. Sakai: Mater. Sci. Eng. A, 2002, vol. 323, pp. 177-186.
Y. Wang, W.Z. Shao, L. Zhen, and X.M. Zhang: Mater. Sci. Eng. A, 2008, vol. 486, pp. 321-332.
G. Gottstein, M. Frommert, M. Goerdeler, and N. Schäfer, Mater. Sci. Eng. A, 2004, vol. 387–389, pp. 604–608.
Acknowledgments
The authors are thankful to D. Samantaray, IGCAR, Kalpakkam, R.K. Jha and Vinod Kumar, RDCIS, SAIL, Ranchi for their help during compression testing in Gleeble thermomechanical simulator.
Author information
Authors and Affiliations
Corresponding author
Additional information
Manuscript submitted December 15, 2013.
Rights and permissions
About this article
Cite this article
Mandal, S., Jayalakshmi, M., Bhaduri, A.K. et al. Effect of Strain Rate on the Dynamic Recrystallization Behavior in a Nitrogen-Enhanced 316L(N). Metall Mater Trans A 45, 5645–5656 (2014). https://doi.org/10.1007/s11661-014-2480-1
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11661-014-2480-1
Keywords
- High Strain Rate
- Electron Back Scatter Diffraction
- Intermediate Strain Rate
- High Strain Rate Deformation
- Kernel Average Misorientation