Skip to main content

Advertisement

Log in

Effect of Tungsten on Primary Creep Deformation and Minimum Creep Rate of Reduced Activation Ferritic-Martensitic Steel

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Effect of tungsten on transient creep deformation and minimum creep rate of reduced activation ferritic-martensitic (RAFM) steel has been assessed. Tungsten content in the 9Cr-RAFM steel has been varied between 1 and 2 wt pct, and creep tests were carried out over the stress range of 180 and 260 MPa at 823 K (550 °C). The tempered martensitic steel exhibited primary creep followed by tertiary stage of creep deformation with a minimum in creep deformation rate. The primary creep behavior has been assessed based on the Garofalo relationship, \( \varepsilon = \varepsilon_{\text{o}} + \varepsilon_{\text{T}} [1-\exp (-r^{\prime} \cdot t)] + \dot{\varepsilon }_{\text{m}} \cdot t \), considering minimum creep rate \( \dot{\varepsilon }_{\text{m}} \) instead of steady-state creep rate \( \dot{\varepsilon }_{\text{s}} \). The relationships between (i) rate of exhaustion of transient creep r′ with minimum creep rate, (ii) rate of exhaustion of transient creep r′ with time to reach minimum creep rate, and (iii) initial creep rate \( \dot{\varepsilon }_{\text{i}} \) with minimum creep rate revealed that the first-order reaction-rate theory has prevailed throughout the transient region of the RAFM steel having different tungsten contents. The rate of exhaustion of transient creep r′ and minimum creep rate \( \dot{\varepsilon }_{\text{m}} \) decreased, whereas the transient strain ɛ T increased with increase in tungsten content. A master transient creep curve of the steels has been developed considering the variation of \( \frac{{\left( {\varepsilon - \varepsilon_{\text{o}} } \right)}}{{\varepsilon_{\text{T}} }} \) with \( \frac{{\dot{\varepsilon }_{\text{m}} \cdot t}}{{\varepsilon_{\text{T}} }} \). The effect of tungsten on the variation of minimum creep rate with applied stress has been rationalized by invoking the back-stress concept.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. R.L. Klueh and D.R. Harries: High-Chromium Ferritic and Martensitic Steels for Nuclear Applications, 2001: ASTM Stock Number: MONO3.

  2. T. Noda, F. Abe, H. Araki and M. Okada; Journal of Nuclear Materials, 141-143, (1986) 1102-1106.

    Article  Google Scholar 

  3. M. Tamura, H. Hayakawa, A. Yoshitake, A. Hishinuma and T. Kondo; Journal of Nuclear Materials 155-157 (1988) 620-625.

    Article  Google Scholar 

  4. D.R. Harries, G.J. Butterworth, A. Hishinuma and F.W. Wiffen; Journal of Nuclear Materials 191-194 (1992) 92-99.

    Article  Google Scholar 

  5. R. Lindau, A. Möslang, M. Rieth, M. Klimiankou, E. Materna-Morris, A. Alamo, A.-A.F. Tavassoli, C. Cayron, A.-M. Lancha, P. Fernandez, N. Baluc, R. Schäublin, E. Diegele, G. Filacchioni, J.W. Rensman, B.v.d. Schaaf, E. Lucon, and W. Dietz: Fus. Eng. Des., 2005, vols. 75–79, pp. 989–96.

  6. M. Reith, M. Schirra, A. Falkenstein, P. Grof, S. Heger, H. Kempe, R. Lindau, and H. Zimmermann: KZKA 6911 report, 2003.

  7. A.-A.F. Tavassoli, A. Alamo, L. Bedel, L. Forest, J.-M. Gentzbittel, J.-W. Rensman, E. Diegele, R. Lindau, M. Schirra, R. Schmitt, H.C. Schneider, C. Petersen, A.-M. Lancha, P. Fernandez, G. Filacchioni, M.F. Maday, K. Mergia, N. Boukos, Baluc, P. Spätig, E. Alves, and E. Lucon: J. Nucl. Mater., 2004, vols. 329–333, pp. 257–62.

  8. N. Baluc, K. Abe, J.L. Boutard, V.M. Chernov, E. Diegele, S. Jitsukawa, A. Kimura, R.L. Klueh, A. Kohyama, R.J. Kurtz, R. Lässer, H. Matsui, A. Möslang, T. Muroga, G.R. Odette, M.Q. Tran, B. van der Schaaf, Y. Wu, J. Yu, and S.J. Zinkle: Vul. Fus., 2007, vol. 47, pp. S696–S717.

  9. A. Alamo, J. C. Brachet, A. Castaing, C. Lepoittevin and F. Barcelo; J. Nucl. Mater., 258-263 (1998) 1228-1235.

    Article  Google Scholar 

  10. F. Abe, S. Nakazawa, H. Araki,T. Noda; Metall. Trans. A 23A (1992) 469-477.

    Article  Google Scholar 

  11. D. Sidey and B. Wilshire; Metal Science Journal, 1969, Vol.3, pp. 56-60.

    Article  Google Scholar 

  12. F. Garofalo: Fundamentals of Creep and Creep Rupture in Metals. MacMillan, New York, 1965.

    Google Scholar 

  13. G. A. Webster, A.P.D. Cox and J.E. Dorn; Metal. Sci. J. 3, (1969) 221-225.

    Article  Google Scholar 

  14. W. J. Evans and B. Wilshire; Metallurgical Transactions, Aug 1970, Vol.1, pp. 2133-2139.

    Article  Google Scholar 

  15. B. K. Choudhary, C. Phaniraj, K. Bhanu Sankara Rao and S. L. Mannan; ISIJ International, 41 (2001) S73-S80.

    Article  Google Scholar 

  16. C. Phaniraj, M. Nandagopal, S.L. Mannan and P. Rodriguez; Acta Metall. Mater., 1991, Vol.39, No.7, pp. 1651-1656.

    Article  Google Scholar 

  17. F. Abe and S. Nakazawa; Metall. Trans. A, 23A (1992) 3025-3034.

    Article  Google Scholar 

  18. E. IsaacSamuel, B. K. Choudhary, K. BhanuSankaraRao and B. Raj: Pressure Vessels and Piping: Materials and Properties. Narosa Publishing House, New Delhi, 2008, pp. 83–100.

    Google Scholar 

  19. P.W. Davies, W. J. Evans, K. R. Williams and B. Wilshire; Scripta Metallurgica, 1969, vol. 3, pp. 671-674.

    Article  Google Scholar 

  20. K.E. Amin, A. K. Mukherjee and J. E. Dorn; J. Mech. Phys. Solids, 1970, Vol. 18, 413-426.

    Article  Google Scholar 

  21. A. Ahmadieh and A.K.Mukherjee; Materials Science and Engineering. 21 (1975) 115-124.

    Article  Google Scholar 

  22. Joon Sik Park, Sung Joon Kim and Chong Soo Lee; Mater. Sci. Eng. A298, (2001) 127-136.

    Article  Google Scholar 

  23. Kouichi Maruyama, Kota SAWADA and Jun-ichi KOIKE; ISIJ International, Vol. 41 (2001), No.6, 641-653.

    Article  Google Scholar 

  24. J. Vanaja, K. Laha, R. Mythili, K. S. Chandravathi, S. Saroja and M. D. Mathew; Mater. Sci. Eng., 533 (2012) 17– 25.

    Article  Google Scholar 

  25. K. Sawada, K. Kubo, F. Abe; Mater. Sci. Eng. A, 319–321 (2001) 784–787.

    Article  Google Scholar 

  26. F. Abe, H. Araki and T. Noda; Met Trans-A, Vol. 22A, (1991), 2225 – 2235.

    Article  Google Scholar 

  27. S. G. Hong, W. B. Lee and C. G. Park; J. Nucl. Mater., 288 (2001) 202-207.

    Article  Google Scholar 

  28. J. Cermak, J. Kucera, B. Million and J. Krumpos; Kov. Mater., 18 (1980) 537-47.

    Google Scholar 

  29. P. J. Ennis and A. Czyrska-Filemonowicz; Sadhana, 28 (3-4) (2003) 709-730.

    Article  Google Scholar 

  30. NIMS creep data sheet, Atlas of creep deformation property No. D-1, 2007.

  31. K. Kimura, K. Sawada and H. Kushima: Proc. 3rd Symp. Heat Res. Steels Alloys High Effic, USC Power Plants, Japan, 2009.

  32. J. Čadek: Creep in Metallic Materials. Elsevier, Amsterdam, 1988.

    Google Scholar 

  33. R. Lagneborg, B. Bergman; Metal Sci. J., 10 (1976) 20-28.

    Article  Google Scholar 

  34. H. J. Frost and M. F. Ashby: Deformation-Mechanism Maps-The Plasticity and Creep of Metals and Ceramics, 1st edn. Pergamon Press, New York, 1982, pp. 62.

    Google Scholar 

Download references

Acknowledgments

The authors acknowledge Dr. C. Phaniraj and Mr. M. Nandagopal for useful discussions. The authors also thank Dr. P.R. Vasudeva Rao, Director, Indira Gandhi Centre for Atomic Research, Dr. T. Jayakumar, Director, Metallurgy and Materials Group and Dr. A. K. Bhaduri, Associate Director, Materials Development & Technology Group for their constant encouragement. The collaboration with M/s. Mishra Dhatu Nigam, Hyderabad and Institute for Plasma Research, Gujarat, India is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Vanaja.

Additional information

Manuscript submitted April 7, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vanaja, J., Laha, K. & Mathew, M.D. Effect of Tungsten on Primary Creep Deformation and Minimum Creep Rate of Reduced Activation Ferritic-Martensitic Steel. Metall Mater Trans A 45, 5076–5084 (2014). https://doi.org/10.1007/s11661-014-2472-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-014-2472-1

Keywords

Navigation