Skip to main content
Log in

Martensitic Transformation in Micron-Sized Fcc Single Crystals

  • Communication
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Detailed transmission electron microscopy examinations verified that α′-martensite formed in micron-sized pillars is nearly dislocation free, surprisingly different than its counterpart in bulk samples, which usually contains a high dislocation density. Furthermore, the martensite was found to nucleate at the intersection between two packets of stacking faults in this low stacking fault energy material. A corresponding mechanism for the nucleation and growth of martensite in micron-sized pillars was proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. W.D. Nix, J.R. Greer, G. Feng, and E.T. Lilleodden: Thin Solid Films, 2007, vol. 515, pp. 3152–57.

    Article  Google Scholar 

  2. M.D. Uchic, P.A. Shade, and D.M. Dimiduk: Ann. Rev. Mater. Res., 2009, vol. 39, pp. 361–86.

    Article  Google Scholar 

  3. O. Kraft, P.A. Gruber, R. Mönig, and D. Weygand: Ann. Rev. Mater. Res., 2010, vol. 40, pp. 293–317.

    Article  Google Scholar 

  4. J.R. Greer and J.T.M. De Hosson: Progr. Mater. Sci., 2011, vol. 56, pp. 654–724.

    Article  Google Scholar 

  5. M.D. Uchic, D.M. Dimiduk, J.N. Florando, and W.D. Nix: Science, 2004, vol. 305, pp. 986–89.

    Article  Google Scholar 

  6. A.S. Schneider, D. Kaufmann, B.G. Clark, C.P. Frick, P.A. Gruber, R. Mönig, O. Kraft, and E. Arzt: Phys. Rev. Lett., 2009, vol. 103, p. 105501-105504.

    Article  Google Scholar 

  7. R. Maaß, S. Van Petegem, D. Grolimund, H. Van Swygenhoven, D. Kiener, and G. Dehm: Appl. Phys. Lett., 2008, vol. 92, p. 071905-071907.

    Article  Google Scholar 

  8. J.R. Greer, W.C. Oliver, and W.D. Nix: Acta Mater., 2005, vol. 53, pp. 1821–30.

    Article  Google Scholar 

  9. A.T. Jennings, M.J. Burek, and J.R. Greer: Phys. Rev. Lett., 2010, vol. 104, p. 135503-135506.

    Article  Google Scholar 

  10. T.A. Parthasarathy, S.I. Rao, D.M. Dimiduk, M.D. Uchic, and D.R. Trinkle: Scripta Mater., 2007, vol. 56, pp. 313–16.

    Article  Google Scholar 

  11. K.S. Ng and A.H.W. Ngan: Acta Mater., 2008, vol. 56, pp. 1712–20.

    Article  Google Scholar 

  12. Q. Yu, Z.-W. Shan, J. Li, X. Huang, L. Xiao, J. Sun, and E. Ma: Nature, 2010, vol. 463, pp. 335–38.

    Article  Google Scholar 

  13. J. Ye, R.K. Mishra, A.K. Sachdev, and A.M. Minor: Scripta Mater., 2011, vol. 64, pp. 292–95.

    Article  Google Scholar 

  14. S.Z. Wu, H.W. Yen, M.X. Huang, and A.H.W. Ngan: Scripta Mater., 2012, vol. 67, pp. 641–44.

    Article  Google Scholar 

  15. C.P. Frick, S. Orso, and E. Arzt: Acta Mater., 2007, vol. 55, pp. 3845–55.

    Article  Google Scholar 

  16. J. Ye, R.K. Mishra, A.R. Pelton, and A.M. Minor: Acta Mater., 2010, vol. 58, pp. 490–98.

    Article  Google Scholar 

  17. N. Ozdemir, I. Karaman, N.A. Mara, Y.I. Chumlyakov, and H.E. Karaca: Acta Mater., 2012, vol. 60, pp. 5670–85.

    Article  Google Scholar 

  18. J.M. San Juan, M.L. Nó, and C.A. Schuh: Adv. Mater., 2008, vol. 20, pp. 272–78.

    Article  Google Scholar 

  19. R. Gu and A.H.W. Ngan: Scripta Mater., 2013, vol. 68, pp. 861–64.

    Article  Google Scholar 

  20. C.P. Frick, S. Orso, and E. Arzt: Acta Mater. 2007, vol. 55, pp. 3845–55.

    Article  Google Scholar 

  21. H.K.D.H. Bhadeshia and R.W.K. Honeycombe: Steels Microstructure and Properties, 3rd ed., Elsevier, Oxford, United Kingdom, 2006.

    Google Scholar 

  22. G.B. Olson and M. Cohen: Ann. Rev. Mater. Sci., 1981, vol. 11, pp. 1–32.

    Article  Google Scholar 

  23. Jae-Bok Seol, J.E. Jung, Y.W. Jang, and C.G. Park: Acta Mater., 2013, vol. 61, pp. 558–78.

    Article  Google Scholar 

  24. A.J. Bogers and W.G. Burgers: Acta Metall., 1964, vol. 12, pp. 255–58.

    Article  Google Scholar 

  25. G.B. Olson and M. Cohen: J. Less-Common Met., 1972, vol. 28, pp. 107–18.

    Article  Google Scholar 

  26. K.W. Andrews: J. Iron Steel Inst., 1965, vol. 203, pp. 721–27.

    Google Scholar 

  27. G. Olson and M. Cohen: Metall. Trans. A, 1975, vol. 6A, pp. 791–95.

    Article  Google Scholar 

  28. G.B. Olson: in Deformation, Processing and Structure, 1982 ASM Materials Science Seminar, St. Louis, Mo, G. Krauss, ed., ASM International, Materials Park, OH, 1984, pp. 391–424.

  29. J.R. Patel and M. Cohen: Acta Metall., 1953, vol. 1, pp. 531–38.

    Article  Google Scholar 

Download references

This work was partially supported by the Research Grants Council of the Hong Kong Special Administration Region, China (Project Nos. HKU 719712E and HKU 712713E) and the University Research Committee of HKU (Project No. 201111159053). The authors are grateful to Professor A.H.W. Ngan for providing the nanoindenter equipment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. X. Huang.

Additional information

Manuscript submitted January 21, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, S.Z., Liang, Z.Y., He, B.B. et al. Martensitic Transformation in Micron-Sized Fcc Single Crystals. Metall Mater Trans A 45, 4731–4736 (2014). https://doi.org/10.1007/s11661-014-2467-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-014-2467-y

Keywords

Navigation