Skip to main content
Log in

Effects of Hydrogen on the Critical Conditions for Dynamic Recrystallization of Titanium Alloy During Hot Deformation

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Hot deformation tests were performed to study the flow behavior and microstructural evolution of a Ti600 titanium alloy with different hydrogen contents. The effects of hydrogen on the critical conditions for the initiation of dynamic recrystallization (DRX) were investigated. The DRX kinetics models of hydrogenated Ti600 alloy were developed, and the DRX volume fractions were quantified under different deformation conditions. The results indicate that the addition of proper hydrogen (no greater than 0.3 pct) benefits the decrease of both the critical stress and critical strain for the initiation of DRX. The critical stress and critical strain are dependent linearly on the peak stress and the strain to peak stress, respectively. The strain range from the initiation to the completion of DRX increases gradually with hydrogen in the hydrogen range of 0 to 0.3 pct, and a slightly decreased strain range is observed at the hydrogen content of 0.5 pct relative to that of 0.3 pct. The addition of large amounts of hydrogen (0.3 pct or greater) in Ti600 alloy induces incomplete DRX during hot deformation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. O.N. Senkov and F.H. Froes: Int. J. Hydrogen Energy, 1999, vol. 24, pp. 565-76.

    Article  Google Scholar 

  2. J. Zhao, H. Ding, Y. Zhong, and C.S. Lee: Int. J. Hydrogen Energy, 2010, vol. 35, pp. 6448-54.

    Article  Google Scholar 

  3. O.N. Senkov and J.J. Jonas: Metall. Mater. Trans. A, 1996, vol. 27A, pp. 1869-76.

    Article  Google Scholar 

  4. J. Zhao, H. Ding, W. Zhao, and Z. Jiang: J. Alloys Comp., 2013, vol. 574, pp. 407-14.

    Article  Google Scholar 

  5. O.N. Senkov, J.J. Jonas, and F.H. Froes: JOM, 1996, vol. 48, pp. 42-7.

    Article  Google Scholar 

  6. J.W. Zhao, H. Ding, H.L. Hou, and Z.Q. Li: J. Alloys Comp., 2010, vol. 491, pp. 673-8.

    Article  Google Scholar 

  7. J.W. Zhao, H. Ding, Y.Q. Wang, and H.L. Hou: Trans. Nonferrous Met. Soc. China, 2009, vol. 19, pp. 65-71.

    Article  Google Scholar 

  8. Y.Y. Zong, D.B. Shan, Y. Lü, and B. Guo: Int. J. Hydrogen Energy, 2007, vol. 32, pp. 3936-40.

    Article  Google Scholar 

  9. Y. Niu, H. Hou, M. Li, and Z. Li: Mater. Sci. Eng. A, 2008, vol. 492, pp. 24-8.

    Article  Google Scholar 

  10. Q.J. Sun, G.C. Wang, and M.Q. Li: Mater. Des., 2012, vol. 35, pp. 80-6.

    Article  Google Scholar 

  11. X. Zhang, Y. Zhao, and W. Zeng: In. J. Hydrogen Energy, 2010, vol. 35, pp. 4354-60.

    Article  Google Scholar 

  12. Y. Zong, S. Huang, Y. Feng, and D. Shan: J. Alloys Comp., 2012, vol. 541, pp. 60-4.

    Article  Google Scholar 

  13. M.Q. Li, J. Luo, and Y. Niu: Mater. Sci. Eng. A, 2010, vol. 527, pp. 6626-32.

    Article  Google Scholar 

  14. W.P. Sun and E.B. Hawbolt: ISIJ Int., 1997, vol. 37, pp. 1000-9.

    Article  Google Scholar 

  15. E.I. Poliak and J.J. Jonas: Acta Mater., 1996, vol. 44, pp. 127-36.

    Article  Google Scholar 

  16. M.R. Barnett, G.L. Kelly, and P.D. Hodgson: Scripta Mater., 2000, vol. 43, pp. 365-9.

    Article  Google Scholar 

  17. G. Gottstein, M. Frommert, M. Goerdeeler, and N. Schafer: Mater. Sci. Eng. A, 2004, vol. 387-389, pp. 604-8.

    Article  Google Scholar 

  18. E.I. Poliak and J.J. Jonas: ISIJ Int., 2003, vol. 43, pp. 684-91.

    Article  Google Scholar 

  19. J.J. Jonas and E.I. Poliak: Mater. Sci. Forum, 2003, vol. 426-432, pp. 57-66.

    Article  Google Scholar 

  20. M. Shaban and B. Eghbali: Mater. Sci. Eng. A, 2010, vol. 527, pp. 4320-5.

    Article  Google Scholar 

  21. H. Mirzadeh and A. Najafizadeh: Mater. Des., 2010, vol. 31, pp. 1174-9.

    Article  Google Scholar 

  22. Y.F. Xia, Y.Y. Liu, Y.P. Mao, G.Z. Quan, and J. Zhou: Trans. Nonferrous Met. Soc. China, 2012, vol. 22, pp. s668-72.

    Article  Google Scholar 

  23. G.Z. Quan, Y.P. Mao, G.S. Li, W.Q. Lv, Y. Wang, and J. Zhou: Comput. Mater. Sci., 2012, vol. 55, pp. 65-72.

    Article  Google Scholar 

  24. A. Galiyev, R. Kaibyshev, and G. Gottstein: Acta Mater., 2001, vol. 49, pp. 1199-207.

    Article  Google Scholar 

  25. J. Zhao, H. Ding, Z. Jiang, M. Huang, and H. Hou: Mater. Des., 2014, vol. 54, pp. 967-72.

    Article  Google Scholar 

  26. J. Zhao, H. Ding, W. Zhao, H. Xiao, H. Hou, and Z. Li: Chinese J. Mater. Res., 2008, vol. 22, pp. 262-8.

    Google Scholar 

  27. J.W. Zhao, H. Ding, W.J. Zhao, X.F. Tian, H.L. Hou, and Y.Q. Wang: Trans. Nonferrous Met. Soc. China, 2008, vol. 18, pp. 506-11.

    Article  Google Scholar 

  28. Y. Han, W. Zeng, Y. Qi, and Y. Zhao: Mater. Sci. Eng. A, 2011, vol. 528, pp. 8410-6.

    Article  Google Scholar 

  29. J. Zhao: Influence of Thermo Hydrogen Treatment on Microstructural Evolution and High Temperature Deformation Behaviour of Titanium Alloys, Northeastern University, Shenyang, 2009.

    Google Scholar 

  30. D.L. Ouyang, S.Q. Lu, X. Huang, L.M. Lei: Chinese J. Nonferrous Met., 2010, vol. 20, pp. 1539-44.

    Google Scholar 

  31. P. Vo, M. Jahazi, and S. Yue: Metall. Mater. Trans. A, 2008, vol. 39A, pp. 2965-80.

    Article  Google Scholar 

  32. F.J. Humphreys and M. Hatherly: Recrystallization and Related Annealing Phenomena, 2nd ed., Pergamon Press, Oxford, 2004.

    Google Scholar 

  33. R. Ding and Z.X. Guo: Acta Mater., 2001, vol. 49, pp. 3163-75.

    Article  Google Scholar 

  34. S.E. Kulkova, A.V. Bakulin, S.S. Kulkov, S. Hocker, and S. Schmauder: J. Exp. Theor. Phys., 2012, vol. 115, pp. 462-73.

    Article  Google Scholar 

  35. A.A. Ilyin, A.M. Mamonov, V.K. Nosov, and V.M. Majstrov: Russian Metall., 1994, vol. 5, pp. 74-7.

    Google Scholar 

  36. L.X. Kong, P.D. Hodgson, and B. Wang: J. Mater. Process. Technol., 1999, vol. 89-90, pp. 44-50.

    Article  Google Scholar 

  37. C.X. Yue, L.W. Zhang, S.L. Liao, J.B. Pei, H.J. Gao, Y.W. Jia, and X.J. Lian: Mater. Sci. Eng. A, 2009, vol. 499, pp. 177-81.

    Article  Google Scholar 

  38. T. Seshacharyulu, S.C. Medeiros, J.T. Morgan, J.C. Malas, W.G. Frazier, and Y.V.R.K. Prasad: Mater. Sci. Eng. A, 2000, vol. 279, pp. 289-99.

    Article  Google Scholar 

  39. H.J. McQueen and D.L. Bourell: in Formability and Metallurgical Structures, A.K. Sachdev and J.D. Embury, eds., TMS, Warrendale, PA, 1986, pp. 2123–30.

  40. A.D. McQuillan: Proc. R. Soc. Lond. Ser. A, 1950, vol. 204, pp. 309–23.

    Article  Google Scholar 

  41. O.N. Senkov, M. Dubois, and J.J. Jonas: Metall. Mater. Trans. A, 1996, vol. 27A, pp. 3963-70.

    Article  Google Scholar 

  42. O.N. Senkov and J.J. Jonas: in Hot Workability of Steels and Light Alloys-Composites, H.J. McQueen, E.V. Konopleva, and N.D. Ryan, eds., Montreal, QC, 1996, pp. 259–66.

Download references

Acknowledgment

The authors would like to thank Mr. Wenjing Zhang from Northeastern University, China, for assisting in the taking of optical microscope images.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jingwei Zhao.

Additional information

Manuscript submitted November 23, 2013.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, J., Ding, H., Jiang, Z. et al. Effects of Hydrogen on the Critical Conditions for Dynamic Recrystallization of Titanium Alloy During Hot Deformation. Metall Mater Trans A 45, 4932–4945 (2014). https://doi.org/10.1007/s11661-014-2448-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-014-2448-1

Keywords

Navigation