Skip to main content
Log in

Experimental Investigation and Thermodynamic Calculations of the Bi-Ge-Sb Phase Diagram

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

A phase diagram of the Bi-Ge-Sb ternary system was investigated experimentally by differential thermal analysis (DTA), scanning electron microscopy with energy-dispersive X-ray spectroscopy (SEM-EDS), and X-ray powder diffraction (XRD) methods and theoretically by the CALPHAD method. The liquidus projection; invariant equilibria; and three vertical sections, Sb-Bi0.5Ge0.5, Ge-Bi0.5Sb0.5, and Bi-Ge0.5Sb0.5, as well as isothermal sections at 773 K and 373 K (500 °C and 100 °C), were predicted using optimized thermodynamic parameters for constitutive binary systems from the literature. In addition, phase transition temperatures of the selected samples with compositions along calculated isopleths were experimentally determined using DTA. Predicted isothermal sections at 773 K and 373 K (500 °C and 100 °C) were compared with the results of the SEM-EDS and XRD analysis from this work. In both cases, good agreement between the extrapolated phase diagram and experimental results was obtained. Alloys from the three studied vertical sections were additionally analyzed using the Brinell hardness test.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Notes

  1. JEOL is a trademark of Japan Electron Optics Ltd., Tokyo.

References

  1. F. von Rohr, A. Schilling, and R.J. Cava: J. Phys.: Condens. Matter., 2013, vol. 25 (7), p. 075804.

    Article  Google Scholar 

  2. S.-Shia Lin: Mater. Sci. Eng. B, 2006, vol. 129, pp. 116–20.

    Article  Google Scholar 

  3. D. Ielmini and A.L. Lacaita: Mater. Today, 2011, vol. 14 (12), pp. 600–07.

    Article  Google Scholar 

  4. S. Raoux, R.M. Shelby, J.J. Sweet, B. Munoz, M. Salinga, Y.-C. Chen, Y.-H. Shih, E.-K. Lai, and M.-H. Lee: Microelectron. Eng., 2008, vol. 85, pp. 2330–33.

    Article  Google Scholar 

  5. S.O. Ryu, S.M. Yoon, K.J. Choi, N.Y. Lee, Y.S. Park, S.Y. Lee, B.G. Yu, J.B. Park, and W.C. Shin: J. Electrochem. Soc., 2006, vol. 153, pp. 234–37.

    Article  Google Scholar 

  6. T.C. Chong, X. Hu, L.P. Shi, P.K. Tan, X.S. Miao, and R. Zhao: Jpn. J. Appl. Phys., 2003, vol. 42 (2B), pp. 824–27.

    Article  Google Scholar 

  7. G.W. Burr, B.N. Kurdi, J.C. Scott, C.H. Lam, K. Gopalakrishnan, and R.S. Shenoy: IBM J. Res. Dev., 2008, vol. 52 (4–5), pp. 449–64.

    Article  Google Scholar 

  8. A. Kostov, D. Živković, and Ž. Živković: J. Therm. Anal. Calorim., 2000, vol. 60, pp. 473–87.

    Article  Google Scholar 

  9. J.M. del Pozo and L. Diaz: J. Non-Cryst. Solids, 1999, vol. 243, pp. 45–51.

    Article  Google Scholar 

  10. V. Gandova, K. Lilova, H. Malakova, B. Huber, N. Milcheva, H. Ipser, J. Vrestal, and G. Vassilev: J. Min. Metall. Sect. B–Metall., 2010, vol. 46 (1), pp. 11–23.

    Article  Google Scholar 

  11. S.R. Ovshinsky: J. Non-Cryst. Solids, 1992, vol. 141, pp. 200–03.

    Article  Google Scholar 

  12. J. Solis, C.N. Afonso, J.F. Trull, and M.C. Morilla: J. Appl. Phys., 1994, vol. 75 (12), pp. 7788–93.

    Article  Google Scholar 

  13. N. Ohshima: J. Appl. Phys., 1996, vol. 79 (11), pp. 8357–63.

    Article  Google Scholar 

  14. E. Dichia, A. Wojakowskab, and B. Legendrea: J. Alloys Compd., 2001, vol. 320, pp. 218–23.

    Article  Google Scholar 

  15. A. Kostov, D. Živković, and Ž. Živković: Thermochim. Acta, 1999, vol. 338, pp. 35–43.

    Article  Google Scholar 

  16. L.H. Belz: Adv. Mater. Process. Inc. Met. Progr., 1987, vol. 132 (5), pp. 65–69.

    Google Scholar 

  17. M.C. Roberts: Mater. Soc., 1989, vol. 13 (4), pp. 411–30.

    Google Scholar 

  18. P.-Y. Chevalier: Thermochim. Acta, 1988, vol. 132, pp. 111–16.

    Article  Google Scholar 

  19. J. Liu, C. Guo, C. Li, and Z. Du: Thermochim. Acta, 2011, vol. 520, pp. 38–47.

    Article  Google Scholar 

  20. H. Ohtani and K. Ishida: J. Electr. Mater., 1994, vol. 23 (8), pp. 747–755.

    Article  Google Scholar 

  21. A.T. Dinsdale: SGTE Unary Database, Version 4.4, 2002, www.sgte.org.

  22. N. Saunders and A.P. Miodownik: CALPHAD (A Comprehensive Guide), Elsevier, London, 1998.

    Google Scholar 

  23. H.L. Lukas, S.G. Fries, and B. Sundman: Computational Thermodynamics: CALPHAD Method, Cambridge University Press, Cambridge, United Kingdom, 2007.

    Book  Google Scholar 

  24. S. Suriñach, M.D. Baró, and F. Tejerina: ICTA 80, Therm. Anal., 1980, vol. 1, pp. 155–60.

    Article  Google Scholar 

  25. F.A. Trumbore: Bell. Syst. Technol. J., 1960, vol. 39, pp. 205–33.

    Article  Google Scholar 

  26. F.A. Trumbore, W.G. Spitzer, R.A. Logan, and C.L. Luke: J. Electrochem. Soc., 1962, vol. 109, pp. 734–38.

    Article  Google Scholar 

  27. R.A. Akopyan and A.A. Abdullayev: Izv. Askad. Nauk SSSR Neorg. Mater., 1978, vol. 14, pp. 1827–33.

    Google Scholar 

  28. V.M. Glazov and A.A. Abdullyev: Izv. Askad. Nauk. SSSR Neorg. Mater., 1978, vol. 14, pp. 1823–26.

    Google Scholar 

  29. H. Stöhr and W. Klemm: Z. Anorg. Chem., 1940, vol. 224, pp. 205–23.

    Article  Google Scholar 

  30. K. Ruttewit and G. Masing: Z. Metallkd., 1940, vol. 32, pp. 52–61.

    Google Scholar 

  31. Y. Malmejac, P. Desre, and E. Bonnier: Mem. Sci. Rev. Metall., 1972, vol. 69, pp. 565–77.

    Google Scholar 

  32. S.A. Alfer, L.A. Mechkovskij, and A.A. Vecher: Z. Fiz. Khim., 1983, vol. 57, pp. 1292–93.

    Google Scholar 

  33. R.W. Olesinski and G.J. Abbaschian: Alloy Phase Diagrams, 1986, vol. 7, pp. 219–22.

    Article  Google Scholar 

  34. A. Kostov, D. Zivkovic, and Z. Zivkovic: Thermochim. Acta, 1999, vol. 338, pp. 35–43.

    Article  Google Scholar 

  35. V.B. Predel and D.W. Stein: Z. Metallkd., 1970, vol. 61, pp. 909–14.

    Google Scholar 

  36. S.A. Alfer, A.A. Vecher, and O.A. Egorov: Russ. J. Phys. Chem., 1981, vol. 55, pp. 910–12.

    Google Scholar 

  37. J. Wang, C. Leinenbach, and M. Roth: J. Alloys Compd., 2009, vol. 485, pp. 577–82.

    Article  Google Scholar 

  38. N. Nasir, A. Grytsiv, P. Rogl, A. Saccone, and G. Giester: J. Solid State Chem., 2009, vol. 182, pp. 645–56.

    Article  Google Scholar 

  39. K. Huttner and G. Tammann: Z. Anorg. Chem., 1905, vol. 44, pp. 117–30.

    Article  Google Scholar 

  40. M. Cook: J. Inst. Met., 1922, vol. 28, pp. 421–45.

    Google Scholar 

  41. W. Klemm: Angew. Chem., 1950, vol. 62, pp. 133–42.

    Article  Google Scholar 

  42. Y.E. Gegusin and B.Y. Pines: Z. Fiz. Khim., 1952, vol. 26, pp. 27–30.

    Google Scholar 

  43. V.M. Glazov and Y.L. Liu: Izv. Akad. Nauk SSSR, Otd. Technol. Nauk, Metall. Toplivo, 1961, vol. 2, pp. 99–107.

  44. A.N. Campbell and J. Winkler: Can. J. Chem., 1963, vol. 41 (4), pp. 848–51.

    Article  Google Scholar 

  45. M. Akaishi and S. Saito: Bull. Tokyo Inst. Technol., 1974, vol. 120, pp. 81–87.

    Google Scholar 

  46. J.P. Dismukes and W.M. Yim: J. Cryst. Growth, 1974, vol. 22, pp. 287–94.

    Article  Google Scholar 

  47. V.S. Zemskov, A.D. Belaya, S.A. Roslov, L.V. Chani, and E.F. Pershina: Inorg. Mater., 1976, vol. 12, pp. 685–88.

    Google Scholar 

  48. N.T. Gladkikh, S.P. Chizhik, V.I. Latin, L.K. Grigor’eva, A.L. Samsonik, and V.N. Sukhov: Russ. Metall., 1987, vol. 1, pp. 173–81.

    Google Scholar 

  49. Y. Cui, S. Ishihara, X.J. Liu, I. Ohnuma, R. Kainuma, H. Ohtani, and K. Ishida: Mater. Trans., 2002, vol. 43 (8), pp. 1879–86.

    Article  Google Scholar 

  50. F.E. Wittig and E. Gehring: Naturwiss., 1959, vol. 46, pp. 200–08.

    Article  Google Scholar 

  51. A. Yazawa, T. Kawashima, and K. Itagaki: Nippon Kinzoku Gakkaishi, 1968, vol. 32, pp. 1288–93.

    Google Scholar 

  52. A.A. Savitskii, L.A. Mechkovskii, and A.A. Vecher: Russ. J. Phys. Chem., 1975, vol. 49, pp. 1721–29.

    Google Scholar 

  53. M. Kawakami: Sci. Rep. Tohoku Imp. Univ. Ser., 1930, vol. 1(19), pp. 521–27.

  54. Y. Feutelais, G. Morgant, J.R. Didry, and J. Schnitter: CALPHAD, 1992, vol. 16, pp. 111–19.

    Article  Google Scholar 

  55. A.T. Dinsdale, A. Kroupa, J. Vizdal, J. Vřešťál, A. Watson, and A. Zemanova: COST Action MP0602, Version 1.0, Thermodynamic Database, Brno, 2009.

  56. A. Kroupa, A.T. Dinsdale, A. Watson, J.J. Vřešťál, A. Zemanova, and P. Broz: J. Min. Metall. Sect. B–Metall., 2012, vol. 48 (3), pp. 339–46.

    Article  Google Scholar 

  57. Ž. Živković, D. Živković, and J. Šesták: J. Therm. Anal. Calorim., 1995, vol. 43 (2), pp. 417–26.

    Article  Google Scholar 

  58. R.M. Lopez, A. Dauscher, H. Scherrer, J. Hejtmanek, H. Kenzar, and B. Lenoir: Appl. Phys. A, 1999, vol. 68, pp. 597–602.

    Article  Google Scholar 

  59. A. Ahmad, R. Bilas, and O. P. Kalyal: J. Mater. Sci., 1995, vol. 30 (17), pp. 4339–42.

    Article  Google Scholar 

  60. K. Ruttewitt and G. Masing: Z. Metallkd., 1940, vol. 32, pp. 52–61.

    Google Scholar 

  61. H. Stöhr and W. Klemm: Z. Anorg. Chem., 1940, vol. 244, pp. 205–23.

    Article  Google Scholar 

  62. C.D. Thurmond: J. Phys. Chem., 1953, vol. 57, pp. 827–30.

    Article  Google Scholar 

  63. G. Mortimer: J. Electrochem. Soc., 1958, vol. 105, pp. 739–41.

    Article  Google Scholar 

  64. D.G. Schweitzer and J.R. Weeks: ASM Trans. Q., 1961, vol. 54, pp. 185–200.

    Google Scholar 

  65. R.W.Olesinski and G.J. Abbaschian: Bull. Alloy Phase Diagrams, 1986, vol. 7 (6), pp. 535–46.

    Article  Google Scholar 

  66. F.A. Trumbore, W.G. Spitzer, R.A. Logan, and C.L. Luke: J. Electrochem. Soc., 1962, vol. 109, pp. 734–38.

    Article  Google Scholar 

  67. B. Predel and D.W. Stein: Z. Metallkd., 1971, vol. 62, pp. 381–86.

    Google Scholar 

  68. L.A. Mechkovskij, P.P. Zhuk, and A.A. Vecher: Russ. J. Phys. Chem., 1978, vol. 52, pp. 1702−03.

    Google Scholar 

  69. V.M. Kozlovskaya and R.N. Rubinshtein: Sov. Phys. Solid State, 1962, vol. 3, pp. 2434–40.

    Google Scholar 

  70. Y.M. Muggianu, M. Gambino, and J.P. Bros: J. Chim. Phys., 1975, vol. 72, pp. 83–88.

    Google Scholar 

  71. O. Redlich and A.T. Kister: Indust. Eng. Chem., 1948, vol. 40, pp. 345–48.

    Article  Google Scholar 

  72. W. Cao, S.-L. Chen, F. Zhang, K. Wu, Y. Yang, Y.A. Chang, R. Schmid-Fetzer, and W. A. Oates: CALPHAD, 2009, vol. 33 (2), pp. 328–42.

    Article  Google Scholar 

  73. T. Swanson: Nat. Bur. Stand. (U.S.), Circ., 1951, vol. 18(I), p. 539.

  74. P. Cucka and C.S. Barrett: Acta Crystallogr., 1962, vol. 15, p. 865.

    Article  Google Scholar 

  75. C.S. Barrett, P. Cucka, and K. Haefner: Acta Crystallogr., 1963, vol. 16, p. 451.

    Article  Google Scholar 

  76. S. Lahti: Bull. Geol. Surv. Finl., 1981, vol. 66, p. 314.

    Google Scholar 

Download references

Acknowledgments

This work was supported by the Ministry of Education, Science and Technological Development of the Republic of Serbia, under Project No. ON172037. Calculations were performed by Pandat 8.1 software.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Duško Minić.

Additional information

Manuscript submitted February 3, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Premović, M., Minić, D., Ćosović, V. et al. Experimental Investigation and Thermodynamic Calculations of the Bi-Ge-Sb Phase Diagram. Metall Mater Trans A 45, 4829–4841 (2014). https://doi.org/10.1007/s11661-014-2445-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-014-2445-4

Keywords

Navigation