Skip to main content
Log in

Effects of M 23C6 on the High-Temperature Performance of Ni-Based Welding Material NiCrFe-7

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The effects of M 23C6 (M = Cr, Fe) on the high-temperature performance of the NiCrFe-7 welding rods and weld metals were studied by high-temperature tensile tests and microstructure analysis. M 23C6 at the grain boundaries (GBs) has a cube-on-cube coherence with one grain in the NiCrFe-7 weld metals, and the adjacent M 23C6 has the coherence relationship with the same grain. The grain with a coherent M 23C6 has a Cr-depletion region. The number and size of M 23C6 particles can be adjusted by heat treatment and alloying. There are two temperatures [T E1: 923 K to 1083 K (650 °C to 810 °C) and T E2: 1143 K to 1203 K (870 °C to 930 °C)] at which the GBs and grains of the NiCrFe-7 welding rod have equal strength during the high-temperature tensile test. When the temperatures are between T E1 and T E2, the strength of the GBs is lower than that of the grains, and the tensile fractures are intergranular. When the temperatures are below T E1 or over T E2, the strength of the GBs is higher than that of the grains, and the tensile fractures are dimples. M 23C6 precipitates at the GBs, which deteriorates the ductility of the welding rods at temperature between T E1 and T E2. M 23C6 aggravates ductility-dip-cracking (DDC) in the weld metals. The addition of Nb and Ti can form MX (M = Ti, Nb, X = C, N), fix C in grain, decrease the initial precipitation temperature of M 23C6, and mitigate the precipitation of M 23C6, which is helpful for minimizing DDC in the weld.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. F. Huang, J. Q. Wang, E. H. Han and W. Ke: J. Mater. Sci. Technol., 2012, vol. 28, pp. 562-568.

    Article  Google Scholar 

  2. Z. Zhang, J. Wang, E. H. Han and W. Ke: J. Mater. Sci. Technol., 2012, vol. 28, pp. 785-792.

    Article  Google Scholar 

  3. T. Y. Kuo and H. T. Lee: Mater. Sci. Eng. A, 2002, vol. 338, pp. 202-212.

    Article  Google Scholar 

  4. A. J. Ramirez and J. C. Lippold: Mater. Sci. Eng. A, 2004, vol. 380, pp. 259-271.

    Article  Google Scholar 

  5. A. J. Ramirez and J. C. Lippold: Mater. Sci. Eng. A, 2004, vol. 380, pp. 245-258.

    Article  Google Scholar 

  6. C. L. White, J. H. Schneibel and R. A. Padgett: Metall. Trans. A, 1983, vol. 14, pp. 595-610.

    Article  Google Scholar 

  7. E. Shapiro and G. Dieter: Metall. Trans., 1970, vol. 1, pp. 1711-1719.

    Article  Google Scholar 

  8. M. Arkoosh and N. Fiore: Metall. Trans., 1972, vol. 3, pp. 2235-2240.

    Article  Google Scholar 

  9. A.J. Ramirez and C.M. Garzon: Hot Cracking Phenomena in Welds II, 2nd ed., Springer, Berlin, 2008, pp. 427-453.

    Book  Google Scholar 

  10. E.A. Torres, F.G. Peternella, R. Caram, and A. J. Ramírez: In-situ Studies with Photons, Neutrons and Electrons Scattering, Springer, Berlin, 2010, pp. 27–39.

    Book  Google Scholar 

  11. R. Qin, Z. Duan, and G. He: Metall. Mater. Trans. A, 2013, vol. 44A, pp. 4661–70.

  12. S.J. Norton: Master Thesis, Ohio State University, 2003.

  13. J.S. Unfried, E.A. Torres, and A.J. Ramirez: Hot Cracking Phenomena in Welds III, 3rd ed., Springer, Berlin, 2011, pp. 295–315.

    Book  Google Scholar 

  14. W. Wu, P. Y. Chen and H. Jiang: China Weld. J., 2009, vol. 2, pp. 61-64.

    Google Scholar 

  15. K. Nishimoto, K. Saida, H. Okauchi and K. Ohta: Sci. Technol. Weld. Joining, 2006, vol. 11, pp. 471-479.

    Article  Google Scholar 

  16. K. Saida, Y. Nomoto, H. Okauchi, H. Ogiwara and K. Nishimoto: Sci. Technol. Weld. Joining, 2012, vol. 17, pp. 1-8.

    Article  Google Scholar 

  17. K. Saida, A. Taniguchi, H. Okauchi, H. Ogiwara and K. Nishimoto: Sci. Technol. Weld. Joining, 2011, vol. 16, pp. 553-560.

    Article  Google Scholar 

  18. T.E. Capobianco and M.E. Hanson: No. LM-05K074, Knolls Atomic Power Laboratory (KAPL), Niskayuna, NY, 2005.

  19. D. J. Lee, Y. S. Kim, Y. T. Shin, E. C. Jeon, S. H. Lee, H. J. Lee, S. K. Lee, J. H. Lee and H. W. Lee: Met. Mater. Int., 2010, vol. 16, pp. 813-817.

    Article  Google Scholar 

  20. A.J. Ramirez and J.C. Lippold: Hot Cracking Phenomena in Welds, 1st ed., Springer, Berlin, 2005, pp. 19–41.

    Book  Google Scholar 

  21. N.E. Nissley and J.C. Lippold: Trends in Welding Research, Proceedings, 2006, pp. 327–32.

  22. M. G. Collins, A. J. Ramirez and J. C. Lippold: Weld. J., 2004, vol. 83, pp. 39S-49S.

    Google Scholar 

  23. G. A. Young, T. E. Capobianco, M. A. Penik, B. W. Morris and J. J. McGee: Weld. J., 2008, vol. 87, pp. 31s-43s.

    Google Scholar 

  24. Z. Lei, R. Chellali, R. Schlesiger, D. Baither and G. Schmitz: Scr. Mater., 2011, vol. 65, pp. 428-31.

    Article  Google Scholar 

  25. Y. H. Yang, J. J. Yu, X. F. Sun, T. Jin, H. R. Guan and Z. Q. Hu: Mater. Charact., 2012, vol. 66, pp. 30-37.

    Article  Google Scholar 

  26. U. Krupp, W. M. Kane, C. Laird and C. J. McMahon: Mater. Sci. Eng. A, 2004, vol. 387, pp. 409-413.

    Article  Google Scholar 

  27. V. Laporte and A. Mortensen: Int. Mater. Rev., 2009, vol. 54, pp. 94-116.

    Article  Google Scholar 

  28. S. Fujiwara and K. Abiko: Le Journal de Physique IV, 1995, vol. 5, pp. 295-300.

    Google Scholar 

  29. S. Onaka, M. Kato and R. Tanaka: J. Japan Inst. Metals, 1986, vol. 50, p. 141.

    Google Scholar 

  30. N. E. Nissley and J. C. Lippold: Weld. J., 2008, vol. 87, pp. 257s-264s.

    Google Scholar 

  31. N. E. Nissley and J. C. Lippold: Weld. J., 2009, vol. 88, pp. 131s-140s.

    Google Scholar 

  32. F. F. Noecker and J. N. DuPont: Weld. J., 2009, vol. 88, pp. 62s-77s.

    Google Scholar 

  33. X. C. Liu, H. W. Zhang and K. Lu: Science, 2013, vol. 342, pp. 337-340.

    Article  Google Scholar 

  34. Q. Liu: Ultramicroscopy, 1995, vol. 60, pp. 81-89.

    Article  Google Scholar 

  35. K. Stiller: Surf. Sci., 1992, vol. 266, pp. 402-408.

    Article  Google Scholar 

  36. H. Li, S. Xia, B. X. Zhou, W. J. Chen and C. L. Hu: J. Nucl. Mater., 2010, vol. 399, pp. 108-113.

    Article  Google Scholar 

  37. Y. S. Lim, J. S. Kim, H. P. Kim and H. D. Cho: J. Nucl. Mater., 2004, vol. 335, pp. 108-114.

    Article  Google Scholar 

  38. K. Kaneko, T. Fukunaga, K. Yamada, N. Nakada, M. Kikuchi, Z. Saghi, J. S. Barnard and P. A. Midgley: Scr. Mater., 2011, vol. 65, pp. 509-512.

    Article  Google Scholar 

  39. H. U. Hong and S. W. Nam: Mater. Sci. Eng. A, 2002, vol. 332, pp. 255-261.

    Article  Google Scholar 

  40. E. A. Trillo and L. E. Murr: J. Mater. Sci., 1998, vol. 33, pp. 1263-1271.

    Article  Google Scholar 

  41. M. A. Mangan, M. V. Kral and G. Spanos: Acta Mater., 1999, vol. 47, pp. 4263-4274.

    Article  Google Scholar 

  42. D. Tytko, P. P. Choi, J. Klower, A. Kostka, G. Inden and D. Raabe: Acta Mater., 2012, vol. 60, pp. 1731-1740.

    Article  Google Scholar 

  43. R. Hu, G. H. Bai, J. S. Li, J. Q. Zhang, T. B. Zhang and H. Z. Fu: Mater. Sci. Eng. A, 2012, vol. 548, pp. 83-88.

    Article  Google Scholar 

  44. L. Zheng, S. Jiao, J. Dong and M. Zhang: J. Mech. Eng., 2010, vol. 46, pp. 54-59.

    Google Scholar 

  45. T. Angeliu and G. Was: Metall. Trans. A, 1990, vol. 21A, pp. 2097-2107.

    Article  Google Scholar 

  46. M. Thuvander and K. Stiller: Mater. Sci. Eng. A, 2000, vol. 281, pp. 96-103.

    Article  Google Scholar 

  47. W. L. Mo, S. P. Lu, D. Z. Li and Y. Y. Li: Mater. Sci. Eng. A, 2013, vol. 582, pp. 326-337.

    Article  Google Scholar 

  48. N. E. Nissley and J. C. Lippold: Weld. J., 2003, vol. 82, pp. 355s-364s.

    Google Scholar 

  49. P. Venkiteswaran, M. Bright and D. Taplin: Mater. Sci. Eng., 1973, vol. 11, pp. 255-268.

    Article  Google Scholar 

  50. W. L. Mo, S. P. Lu, D. Z. Li and Y. Y. Li: J. Mater. Sci. Technol., 2013, vol. 29, pp. 458-466.

    Article  Google Scholar 

  51. H. Miura, S. Watanabe, T. Sakai and M. Kato: Interface Sci., 1997, vol. 4, pp. 329-338.

    Google Scholar 

  52. M. G. Collins and J. C. Lippold: Weld. J., 2003, vol. 82, pp. 288s-295s.

    Google Scholar 

  53. M. G. Collins, A. J. Ramirez and J. C. Lippold: Weld. J., 2003, vol. 82, pp. 348S-354S.

    Google Scholar 

  54. J. Q. Chen, H. Lu, C. Yu, J. M. Chen and M. L. Zhang: Sci. Technol. Weld. Joining, 2013, vol. 18, pp. 346-353.

    Article  Google Scholar 

  55. B. C. Peng, H. X. Zhang, J. Hong, J. Q. Gao, H. Q. Zhang, Q. J. Wang and J. F. Li: Mater. Sci. Eng. A, 2011, vol. 528, pp. 3625-3629.

    Article  Google Scholar 

  56. X. Li: Master Thesis, Graduate University of Chinese Academy of Sciences, 2012.

Download references

Acknowledgments

The authors are grateful for the financial support by the Key Research Program of the Chinese Academy of Sciences (Grant No. KGZD-EW-XXX-2). The authors are grateful to X. B. Hu and X. C. Liu for TEM study, to X. M. Luo for EBSD study, to W. C. Dong for the finite element modeling. The authors also acknowledge the assistance provided by China First Heavy Machinery Co. Ltd. in the welding process.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shanping Lu.

Additional information

Manuscript submitted October 9, 2013.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mo, W., Lu, S., Li, D. et al. Effects of M 23C6 on the High-Temperature Performance of Ni-Based Welding Material NiCrFe-7. Metall Mater Trans A 45, 5114–5126 (2014). https://doi.org/10.1007/s11661-014-2439-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-014-2439-2

Keywords

Navigation