Skip to main content
Log in

Low Cycle Fatigue Behavior of 316LN Stainless Steel Alloyed with Varying Nitrogen Content. Part I: Cyclic Deformation Behavior

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

In this study, the influence of cyclic strain amplitude on the evolution of cyclic stress–strain response and the associated cyclic deformation mechanisms in 316LN stainless steel with varying nitrogen content (0.07 to 0.22 wt pct) is reported in the temperature range 773 K to 873 K (500 °C to 600 °C). Two mechanisms, namely dynamic strain aging and secondary cyclic hardening, are found to strongly influence the cyclic stress response. Deformation substructures associated with both the mechanisms showed planar mode of deformation. These mechanisms are observed to be operative over certain combinations of temperature and strain amplitude. For strain amplitudes >0.6 pct, wavy or mixed mode of deformation is noticed to suppress both the mechanisms. Cyclic stress–strain curves revealed both single and dual-slope behavior depending on the test temperature. Increase in nitrogen content is found to increase the tendency toward planar mode of deformation, while increase in strain amplitude leads to transition from planar slip bands to dislocation cell/wall structure formation, irrespective of the nitrogen content in 316LN stainless steel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. K. Oda, N. Kondo and K. Shibata: ISIJ International, 1990, vol. 30(8), pp. 625-631.

    Article  Google Scholar 

  2. I. Karaman, H. Sehitoglu, H. J. Maier and Y. I. Chumlyakov: Acta mater., 2001, vol. 49, pp. 3919–3933.

    Article  Google Scholar 

  3. A.F.Armas, O.R.Bettin, I.Alvarez-Armas and G.H.Rubiolo : J Nucl. Mater., 1988, vol. 155-157, pp. 646-649.

    Google Scholar 

  4. G.V. Prasad Reddy, R. Sandhya, K.B.S. Rao, and S. Sankaran: Proc. Eng., 2010, vol. 2, pp. 2181–88.

  5. M. Gerland, R. Alain, B. Ait Saadi and J. Mendez: Mater. Sci. Engg. A, 1997, vol. 229, pp. 68-86.

    Article  Google Scholar 

  6. J.O. Nilsson: Fatigue Engng. Mater. Struct., 1984, vol. 7(1), pp. 55-64.

    Article  Google Scholar 

  7. S. Degallaix, J. Foct and A. Hendry: Mater. Sci. and Tech., 1986, vol. 2, pp. 946-950.

    Article  Google Scholar 

  8. R. Taillard and J. Foct: Proc. Int. Conf. on High Nitrogen Steels, HNS’88, Lille, France, 1989, pp. 163–68.

  9. S. Degallaix, G. Degallaix and J. Foct: in H.D. Solomon, G.R. Halford, L.R. Kaisand, and B.N. Leis (Eds.), Low Cycle Fatigue, ASTM STP 942, ASTM Philadelphia, 1988, pp. 798-811.

    Google Scholar 

  10. D.W. Kim, W.-S. Ryu, J.H. Hong, and S.-K. Choi: J. Nucl. Mater., 1998, vol. 254, pp. 226–33.

    Article  Google Scholar 

  11. G.V. Prasad Reddy, R. Sandhya, M.D. Mathew, and S. Sankaran: Metall. Mater. Trans A, 2014, in press.

  12. V.G. Gavriljuk and H. Berns: High Nitrogen Steels: Structure, Properties, Manufacture, Applications, 1st ed., Springer Verlag, Berlin, 1999.

    Book  Google Scholar 

  13. X. W. Zhou and M. Grujicic: Calphad, 1996, vol. 20(3), pp. 257-272.

    Article  Google Scholar 

  14. Yu. Jagodzinski, S. Smouk, A. Tarasenko and H. Hänninen: Mater. Sci. Forum, 1999, vol. 318-320, pp. 309-314.

    Article  Google Scholar 

  15. M.D. Mathew, K. Laha and V. Ganesan: Mater. Sci. Engg. A, 2012, vol. 535, pp. 76– 83.

    Article  Google Scholar 

  16. G. Wahlberg, U. Rolander, and H.O. Andren: Proc. Int. Conf. on High Nitrogen Steels, HNS’88, Lille, France, 1989, pp. 163–68.

  17. M. Murayama, K. Hono, H. Hirukawa, T. Ohmura and S. Matsuoka: Scripta Mater., 1999, vol. 41(5), pp. 467-473.

    Article  Google Scholar 

  18. V.V. Sumin, G. Chimid, T. Rashev and L. Saryivanov: Mater. Sci. Forum, 1999, vol. 318-320, pp. 31-40.

    Article  Google Scholar 

  19. A.P.L. Turner: Metall. Trans. A, 1979, vol. 10A, pp. 225-234.

    Article  Google Scholar 

  20. L. Remy and A.Pineau: Mater. Sci. and Engg., 1978, vol. 36, pp. 47 – 63.

    Article  Google Scholar 

  21. A.H.Cottrell: Dislocations and plastic flow in crystals, Oxford University, London, 1953.

    Google Scholar 

  22. A.W.Sleeswyk: Acta Metall., 1958, vol. 6(9), pp. 598-603.

    Article  Google Scholar 

  23. G.V. PrasadReddy, R. Sandhya, M. Valsan, and K.B.S. Rao: Mater. Sci. Technol., 2010, vol. 26(11), pp. 1384–92.

    Article  Google Scholar 

  24. C.F. Jenkins and G.V. Smith: Trans. Metall. Soc. AIME, 1969, vol. 245, pp. 2149–56.

    Google Scholar 

  25. K.G. Samuel, S.L. Mannan and P. Rodriguez: Acta. Metall., 1988, vol. 36 (8), pp. 2323-2327.

    Article  Google Scholar 

  26. Seong-Gu Hong and Soon-Bok Lee: J of Nucl. Mater., 2005, vol. 340(2-3), pp. 307-314.

    Article  Google Scholar 

  27. D. Pecker and I.M. Bernstein, Handbook of Stainless Steels, McGraw-Hill, New York, 1977.

    Google Scholar 

  28. Byung Sup Rho and Soo Woo Nam: J of Nucl Mater., 2002, vol. 300, pp. 65–72.

    Article  Google Scholar 

  29. V.S. Srinivasan, M. Valsan, R. Sandhya, K. B. S. Rao, S.L.Mannan and D.H.Sastry: Int. J. Fat., 1999, vol. 21, pp. 11–21.

    Article  Google Scholar 

  30. J. Man, K. Obrtlík, M. Petrenec, P. Beran, M. Smaga, A. Weidner, J. Dluhoš, T. Kruml, H. Biermann, D. Eifler and J. Polák: Procedia Engineering, 2011, vol. 10, pp. 1279-1284.

    Article  Google Scholar 

  31. Chia-Chang Shiha, New-Jin Hoa and Hsing-Lu Huangb: Mater. Characterization, 2009, vol. 60, pp. 1280-1288.

    Article  Google Scholar 

  32. G.V. Prasad Reddy, R. Sandhya, M.D. Mathew, and S. Sankaran: Metall. Mater. Trans. A, 2013, vol. 44A, pp. 5625–29.

  33. H.S. Chen, J.J. Gilman and A.K. Head: J. of Applied Physics, 1964, vol. 35(8), pp. 2502-2514.

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Mr. P. Shyamala Rao, IGCAR, Kalpakkam for providing SEM facility and Mr. Srinivasa Rao (IGCAR) and Mrs. Kanchanamala, Mr. Papa Rao, IIT Madras for assistance in TEM sample preparation and examination.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. V. Prasad Reddy.

Additional information

Manuscript submitted January 11, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prasad Reddy, G.V., Sandhya, R., Sankaran, S. et al. Low Cycle Fatigue Behavior of 316LN Stainless Steel Alloyed with Varying Nitrogen Content. Part I: Cyclic Deformation Behavior. Metall Mater Trans A 45, 5044–5056 (2014). https://doi.org/10.1007/s11661-014-2428-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-014-2428-5

Keywords

Navigation