Skip to main content
Log in

A Rate-Theory Approach to Irradiation Damage Modeling with Random Cascades in Space and Time

  • Symposium: Materials and Fuels for the Current and Advanced Nuclear Reactors II
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

A modification of the “rate theory” approach to point defect balance modeling is considered in which the production term is written to explicitly capture the discrete occurrence of distinct displacement damage cascades. The constant production rate density is replaced with a pulsed source that operates for very short periods at randomly selected points in time and space to produce new defects. In addition, dislocation sinks are modeled as discrete regions with perfect crystal in between instead of being uniformly distributed in space. Simulations reveal that under conditions of high sink strength, fast diffusion, and lower production rate (cascade frequency) defect populations liberated in any given cascade can be completely eliminated by absorption and recombination well before any new defects are introduced into the same region of space. Populations from distinct cascades may not have the opportunity to intermingle and overlap with each other to approach the bulk average values predicted by standard theory driven by a constant, average production term. Due to the large difference between vacancy and interstitial diffusivities, absorption of defects at microstructural sinks can occur in rapid pulses of interstitials followed by a much delayed influx of vacancies over a longer period. This is in stark contrast to the typical picture of a reasonably constant, perhaps slightly biased flow of one species of defect over the other. Expansion of the model to two spatial dimensions allowed for more explicit treatment of dislocation microstructure through informed dislocation arrangement and the use of proper boundary conditions at the edge of the dislocation core.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. S. D. Harkness, J. A. Tesk, C-Y. Li, Nucl. Appl. Tech. 9 (1970) 24.

    Google Scholar 

  2. A.D. Brailsford and R. Bullough: in Physical Metallurgy of Reactor Fuel Elements, J.E. Harris and E.C. Sykes, eds., The Metals Society, London, 1975, p. 148.

  3. C. C. Dollins, J. Nucl. Mater. 59 (1976) 61-76.

    Article  Google Scholar 

  4. R. A. Holt, J. Nucl. Mater. 372 (2008) 182-214.

    Article  Google Scholar 

  5. S. I. Golubov, A. V. Barashev, R. E Stoller, Mater. Res. Soc. Symp. Proc. 1383 (2012) 55-60.

    Article  Google Scholar 

  6. W. G. Wolfer, J. Nucl. Mater. 90 (1980) 175.

    Article  Google Scholar 

  7. J. R. Matthews and M. W. Finnis, J. Nucl. Mater. 159 (1988) 257-285.

    Article  Google Scholar 

  8. G. S. Was, Fundamentals of Radiation Materials Science, Springer-Verlag, Berlin, 2007.

    Google Scholar 

  9. R. Sizmann, J. Nucl. Mater. 69-70 (1978) 386-412.

    Article  Google Scholar 

  10. N. F. Lam, J. Nucl. Mater. 56 (1975) 125-135.

    Article  Google Scholar 

  11. D. R. Olander, Fundamentals of Nuclear Reactor Fuel Elements, TID-26711-P1, Technical Information Service, Springfield, VA, 1976.

    Book  Google Scholar 

  12. F. A. Nichols, J. Nucl. Mater. 75 (1978) 32-41.

    Article  Google Scholar 

  13. L. K. Mansur, W. A. Coghlan, A. D. Brailsford, J. Nucl. Mater. 85-86 (1979) 591-595.

    Article  Google Scholar 

  14. L. K. Mansur, W. A. Coghlan, T. C. Reiley, W. G. Wolfer, J. Nucl. Mater. 103-104 (1981) 1257-1262.

    Article  Google Scholar 

  15. R. E. Stoller, G. R. Odette, B. D. Wirth, J. Nucl. Mater. 251 (1997) 49-60.

    Article  Google Scholar 

  16. A. P. Selby, D. Xu, N. Juslin, N. A. Capps, B. D. Wirth, J. Nucl. Mater. 437 (2013) 19-23.

    Article  Google Scholar 

  17. F. Gao, D. J. Bacon, L. M. Howe, C. B. So, J. Nucl. Mater. 291 (2001) 288-298.

    Article  Google Scholar 

  18. H. L. Heinisch, B. N. Singh, J. Nucl. Mater. 271-272 (1999) 46-51.

    Article  Google Scholar 

  19. J. Marian, V. V. Bulatov, J. Nucl. Mater. 415 (2011) 84-95.

    Article  Google Scholar 

  20. J. Marian, T. L. Hoang, J. Nucl. Mater. 429 (2012) 293-297.

    Article  Google Scholar 

  21. T. Jourdan and J.-P. Crocombette, Phys. Rev. B 86 (2012) 054113.

    Article  Google Scholar 

  22. D. Xu and B. D. Wirth, J. Nucl. Mater. 403 (2010) 184-190.

    Article  Google Scholar 

  23. D. Xu and B. D. Wirth, Acta Mat. 60 (2012) 4286-4302.

    Article  Google Scholar 

  24. P. C. Millett, and M. Tonks, Current Opinion in Solid State and Materials Science 15 (2011) 125-133.

    Article  Google Scholar 

  25. S. Rokkam, A. El-Azab, P. Millett, and D. Wolf, Modelling Simul. Mater. Sci. Eng. 17 (2009) 064002.

    Article  Google Scholar 

  26. P. C. Millett, S. Rokkam, A. El-Azab, M. Tonks, and D. Wolf, Modelling Simul. Mater. Sci. 17 (2009) 064003.

    Article  Google Scholar 

  27. P. C. Millett, A. El-Azab, S. Rokkam, M. Tonks, D. Wolf, Comp. Mat. Sci. 50 (2011) 949-959.

    Article  Google Scholar 

  28. S. Hu, C. H. Henager, H. L. Heinisch, M. Stan, M. I. Baskes, S. M. Valone, J. Nucl. Mater. 392 (2009) 292-300.

    Article  Google Scholar 

  29. P. C. Millett, A. El-Azab, D. Wolf, Comp. Mat. Sci. 50 (2011) 960-970.

    Article  Google Scholar 

  30. Y. U. Wang, Y. M. Jin, A. M. Cuitino, and A. G. Khachaturyan, Acta Mater. 49 (2001) 1847-1857.

    Article  Google Scholar 

  31. A. Boyne, C. Shen, R. Najafabadi, Y. Wang, J. Nucl. Mater 438 (2013) 209-217.

    Article  Google Scholar 

  32. M. J. Norgett, M. T. Robinson, I. M. Torrens, Nucl. Eng. Des. 33 (1975) 50-54.

    Article  Google Scholar 

  33. S. J. Zinkle and B. N. Singh, J. Nucl. Mater. 199 (1993) 173-191.

    Article  Google Scholar 

  34. D. J. Bacon, F. Gao, Yu. N. Osetsky, J. Nucl. Mater. 276 (2000) 1-12.

    Article  Google Scholar 

  35. D. Hull and D. J. Bacon, Introduction to Dislocations 3rd Ed, Pergamon, New York, 1984.

    Google Scholar 

  36. S.D. Cohen and A.C. Hindmarsh: in CVODE User Guide, UCRL-MA-118618, Lawrence Livermore National Laboratory, September 1994.

  37. M. I. Mendelev and G. J. Ackland, Phil. Mag. Lett. 87 (2007) 349-359.

    Article  Google Scholar 

  38. COMSOL MultiphysicsTM version 4.3, COMSOL AB, Stockholm, 2012.

  39. R. S. Averback, T. Diaz de la Rubia, Solid State Physics, 51 (1998) 281.

    Google Scholar 

  40. E. Alonso, M. J. Caturla, T. Diaz de la Rubia, J. M. Perlado,, J. Nucl. Mater. 276 (2000) 221.

    Article  Google Scholar 

  41. W. J. Phythian, R. E. Stoller, A. J. E. Foreman, A. F. Calder, D. J. Bacon, J. Nucl. Mater. 223 (1995) 245-261.

    Article  Google Scholar 

  42. Y. N. Osetsky, D. J. Bacon, and N. de Diego, Metal. Mat. Trans. A 33A (2002) 777-782.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jesse J. Carter.

Additional information

Manuscript submitted May 8, 2013.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Carter, J.J., Howland, W.H. & Smith, R.W. A Rate-Theory Approach to Irradiation Damage Modeling with Random Cascades in Space and Time. Metall Mater Trans A 46, 93–101 (2015). https://doi.org/10.1007/s11661-014-2409-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-014-2409-8

Keywords

Navigation