Skip to main content
Log in

Influence of Temperature and Holding Time on the Interaction of V, Al, and N in Microalloyed Forging Steels

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

A medium-carbon vanadium microalloyed steel (38MnSiVS5) with three different aluminum levels (0.006, 0.020, and 0.03 wt pct) was used to examine the interaction of vanadium, aluminum, and nitrogen during the heating and cooling cycle for forging. The thermal cycle was simulated using a Gleeble® 1500. Hold times varied from 5 to 45 minutes and temperature varied from 1323 K to 1523 K (1050 °C to 1250 °C). Thermal simulation specimens and as-received material were characterized by quantitative metallography, hardness, and chemical analysis of electrolytically extracted precipitates. The hardness was observed to be relatively constant for all aluminum levels after all thermal simulations at and above 1423 K (1150 °C). Hardness, pearlite fraction, and austenite grain size decreased with increasing aluminum content at the two lowest temperatures examined, which were 1323 K and 1373 K (1050 °C and 1100 °C). The amount of vanadium precipitated in the lowest aluminum steel was very consistent, approximately 70 pct, for the thermal simulations. The amount of precipitated vanadium decreased with increasing amount of aluminum nitride for the 0.03 wt pct Al level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. G. Krauss, Steels: Processing, Structure, and Performance, Materials Park, OH:ASM International, 2005.

    Google Scholar 

  2. C.J. Van Tyne: in ASM Handbook Volume 15: Metalworking: Bulk Forming, S.L. Semiatin, ed., ASM International, Materials Park, OH, 2005, pp. 241–60.

  3. W. Morrison: The Use of Vanadium in Steel, Guilin, China, 2000, pp. 25–35.

  4. T. Gladman, The Physical Metallurgy of Microalloyed Steels, London, UK: Institute of Materials, 1997.

    Google Scholar 

  5. D. Naylor: Materials Science Forum, vol. 284–286, 1998, pp. 83–94.

  6. M.D. Head, ed.: Bar Steels: Steel Products Manual, Association for Iron and Steel Technology, Warrendale, PA, 2010.

  7. E.T. Turkdogan, “Causes and Effects of Nitride and Carbonitride Precipitation During Continuous Casting,” Iron & Steelmaker, vol. 16, no. 5, May 1989, pp. 61-75.

    Google Scholar 

  8. T.N. Baker, “Processes, Microstructure and Properties of Vanadium Microalloyed Steels,” Materials Science and Technology, vol. 25, 2009, pp. 1083-1107.

    Article  Google Scholar 

  9. A. DeArdo, M. Hua, K. Cho, and C. Garcia, “On Strength of Microalloyed Steels: An Interpretive Review,” Materials Science and Technology, vol. 25, 2009, pp. 1074–1082.

    Article  Google Scholar 

  10. T. Gladman, Grain Size Control, London, UK: Maney Publishing, 2004.

    Google Scholar 

  11. J.N. Cordea and R.E. Hook, “Recrystallization Behavior in Deformed Austenite of High Strength Low Alloy (HSLA) Steels,” Metall. Trans., vol. 1, 1970, pp. 111-118.

    Google Scholar 

  12. F. Wlison and T. Gladman, “Aluminum Nitride in Steel,” International Materials Reviews, vol. 33, 1988, pp. 221-286.

    Article  Google Scholar 

  13. M. Sennour and C. Esnouf, “Contribution of Advanced Microscopy Techniques to Nano-Precipitates Characterization: Case of AlN Precipitation in Low-Carbon Steel,” ActaMaterialia, vol. 51, 2003, pp. 943-957.

    Article  Google Scholar 

  14. H.O. Pierson, Handbook of Refractory Carbides and Nitrides, Westwood, NJ: Noyes Publications, 1996.

    Google Scholar 

  15. B. Engl and E.J. Drewes: in Technology of Continuously Annealed Cold-Rolled Sheet Steel, R. Pradhan, eds., 1985, pp. 17–18.

  16. K. Ushioda, H.G. Suzuki, H. Komatsu, and K. Esaka, “Influence of Sulfur on AIN Precipitation During Cooling after Solidification and Resulting Hot Shortness in Low Carbon Steel,” The Journal of the Japan Institute of Metals, vol. 59, 1995, pp. 373–380.

    Google Scholar 

  17. L.D. Frawley, R. Priestner, and P.D. Hodgson: THERMEC’97: International Conference on Thermomechanical Processing of Steels and Other Materials, 1997, vol. 2, pp. 2169–75.

  18. C.W. Siyasiya and W.E. Stumpf, “The Influence of Sulphur Content on the Static Recrystallisation of Cold Worked Low Carbon Aluminium-killed Strip Steels,” Materials Science and Engineering: A, vol. 494, 2008, pp. 188-195.

    Article  Google Scholar 

  19. R.E. Reed-Hill and R. Abbaschian, Physical Metallurgy Principles, Boston, MA: PWS Publishing Company, 1994.

    Google Scholar 

  20. F.B. Pickering: Mater. Sci. Eng., 1992, vol. 7.

  21. S. Zajac, “Precipitation of MicroalloyCarbo-nitrides Prior, During, and After Austenite/Ferrite Transformation,” Materials Science Forum, vol. 500-501, 2005, pp. 75–86.

    Article  Google Scholar 

  22. S. Zajac, T. Siwecki, W.B. Hutchinson, and R. Lagneborg, “Strengthening Mechanisms in Vanadium Microalloyed Steels Intended for Long Products,” ISIJ International, vol. 38, 1998, pp. 1130-1139.

    Article  Google Scholar 

  23. X. Li, L. Zhao, X. Wang, and Y. Zhao, “Precipitation and Hetero-nucleation Effect of V(C,N) in V-microalloyed Steel,” Journal of Wuhan University of Technology–Materials Science Edition, vol. 23, 2008, pp. 844-849.

    Article  Google Scholar 

  24. S. Zajac, R. Lagneborg, and T. Siwecki: Microalloying ‘95, Iron and Steel Society, 1995, pp. 11–14.

  25. R. Lagneborg and S. Zajac, “A Model for Interphase Precipitation in V-microalloyed Structural Steels,” Metallurgical and Materials Transactions A, vol. 32A, 2001, pp. 39–50.

    Article  Google Scholar 

  26. T. Ochi, T. Takahashi, and H. Takada: 30th Mechanical Working and Steel Processing Conference, vol. 16, 1989, pp. 23–26.

  27. F. Ishikawa, T. Takahashi, and T. Ochi, “Intragranular Ferrite Nucleation in Medium-Carbon Vanadium Steels,” Metallurgical and Materials Transactions A, vol. 25A, 1994, pp. 929–936.

    Article  Google Scholar 

  28. Y. Sawada, R.P. Foley, S.W. Thompson, and G. Krauss: 35th Mechanical Working and Steel Processing Conference, vol. 31, 1993, pp. 263–286.

  29. J.A. Garrison, J.G. Speer, S.W. Thompson, R.J. Glodowski, and K.P Williams: Iron & Steel Technology, 2006, vol. 3, pp. 43–51.

    Google Scholar 

  30. Y. Du, R. Wenzel, and R. Schmid-Fetzer, “Thermodynamic Analysis of Reactions in the Al-N-Ta and Al-N-V Systems,” Calphad, vol. 22, 1998, pp. 43-58.

    Article  Google Scholar 

  31. R. Radis and E. Kozeschnik: Materials Science Forum, Vol. Advanced Materials Forum V, 2010, pp. 605–11.

  32. R. Radis and E. Kozeschnik, “Kinetics of AlN Precipitation in Microalloyed Steel,” Modeling and Simulation in Materials Science and Engineering, vol. 18, no. 5, Jul. 2010, pp. 1-16.

    Article  Google Scholar 

  33. R. Radis and E. Kozeschnik, “Concurrent Precipitation of AlN and VN in Microalloyed Steel,” Steel Research International, vol. 81, 2010, pp. 681-685.

    Article  Google Scholar 

  34. R.E. Haimbaugh, Practical Induction Heat Treating, Materials Park, OH: ASM International, 2001.

    Google Scholar 

  35. H. Chandler, ed.: Heat Treater’s Guide: Practices and Procedures for Irons and Steels, ASM International, Materials Park, OH, 1995.

  36. R.L. Higginson and C.M. Sellars, Worked Examples in Quantitative Metallography, London, UK:Maney Publishing, 2003.

    Google Scholar 

  37. F. Kurosawa, I. Tanaka, K. Sato, and T. Otsuki, “Simultaneous Determination of Metallic Elements in Precipitates and Inclusions Extracted from Steel by Inductively Coupled Plasma-Atomic Emission Spectrometry,” SpectrochimicaActa Part B: Atomic Spectroscopy, vol. 36, 1981, pp. 727-733.

    Article  Google Scholar 

  38. A. Rivas, D. Matlock, and J. Speer, “Quantitative Analysis of Nb in Solution in a Microalloyed Carburizing Steel by Electrochemical Etching,” Materials Characterization, vol. 59, 2008, pp. 571-577.

    Article  Google Scholar 

  39. W. Ozgowicz, A. Kurc, and G. Nawrat, “Identification of Precipitations in Anodically Dissolved High-Strength Microalloyed Weldox Steels,” Archives of Materials Science, vol. 31, 2008, pp. 95–100.

    Google Scholar 

  40. J. Lu, J.B. Wiskel, O. Omotoso, H. Henein, and D. G. Ivey, “Matrix Dissolution Techniques Applied to Extract and Quantify Precipitates from a Microalloyed Steel,” Metallurgical and Materials Transactions A, vol. 42A, 2011, pp. 1767-1784.

    Article  Google Scholar 

  41. K. Poorhaydari and D.G. Ivey, “Precipitate Volume Fraction Estimation in High Strength Microalloyed Steels,” Canadian Metallurgical Quarterly, vol. 48, 2009, pp. 115-122.

    Article  Google Scholar 

  42. K. Poorhaydari and D. G. Ivey, “Microstructural Examination of a Grade 100 Microalloyed Steel and Correlation with Yield Strength,” Canadian Metallurgical Quarterly, vol. 48, 2009, pp. 443-454.

    Article  Google Scholar 

  43. F. Kurosawa, I. Taguchi, and R. Matsumoto, “Observation of Precipitates and Metallographic Grain Orientation in Steel by a Non-aqueous Electrolyte-Potentiostatic Etching Method,” The Journal of the Japan Institute of Metals, vol. 43, 1979, pp. 1068-1077.

    Google Scholar 

  44. F. Kurosawa, I. Taguchi, and R. Matsumoto, “Observation and Analysis of Carbides in Steels Using Non-aqueous Electrolyte-Potentiostatic Etching Method,” The Journal of the Japan Institute of Metals, vol. 44, 1980, pp. 1288-1295.

    Google Scholar 

  45. F. Kurosawa, I. Taguchi, and R. Matsumoto, “Observation and Analysis of Nitrides in Steels Using the Non-aqueous Electrolyte-Potentiostatic Etching Method,” The Journal of the Japan Institute of Metals, vol. 45, 1980, pp. 63-71.

    Google Scholar 

  46. J.J. Moore, Chemical Metallurgy, 1st ed., London, UK: Butterworth & Co., 1981.

    Google Scholar 

  47. G F. Vander Voort, Metallography: Principles and Practice, Materials Park, OH: ASM International, 1999, p. 393.

    Google Scholar 

  48. E.E. Underwood, Quantitative Stereology, Addison-Wesley Publishing Co, Reading, MA, 1970.

    Google Scholar 

Download references

Acknowledgments

Support for this work by the Advanced Steel Processing and Products Research Center at the Colorado School of Mines and by FIERF in the form of 2010–2011 FIERF fellowship for L.M. Rothleutner is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lee M. Rothleutner.

Additional information

Manuscript submitted December 15, 2012.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rothleutner, L.M., Cryderman, R. & Van Tyne, C.J. Influence of Temperature and Holding Time on the Interaction of V, Al, and N in Microalloyed Forging Steels. Metall Mater Trans A 45, 4594–4609 (2014). https://doi.org/10.1007/s11661-014-2375-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-014-2375-1

Keywords

Navigation