Skip to main content

Advertisement

Log in

A Novel Ni-Containing Powder Metallurgy Steel with Ultrahigh Impact, Fatigue, and Tensile Properties

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The impact toughness of powder metallurgy (PM) steel is typically inferior, and it is further impaired when the microstructure is strengthened. To formulate a versatile PM steel with superior impact, fatigue, and tensile properties, the influences of various microstructures, including ferrite, pearlite, bainite, and Ni-rich areas, were identified. The correlations between impact toughness with other mechanical properties were also studied. The results demonstrated that ferrite provides more resistance to impact loading than Ni-rich martensite, followed by bainite and pearlite. However, Ni-rich martensite presents the highest transverse rupture strength (TRS), fatigue strength, tensile strength, and hardness, followed by bainite, pearlite, and ferrite. With 74 pct Ni-rich martensite and 14 pct bainite, Fe-3Cr-0.5Mo-4Ni-0.5C steel achieves the optimal combination of impact energy (39 J), TRS (2170 MPa), bending fatigue strength at 2 × 106 cycles (770 MPa), tensile strength (1323 MPa), and apparent hardness (38 HRC). The impact energy of Fe-3Cr-0.5Mo-4Ni-0.5C steel is twice as high as those of the ordinary high-strength PM steels. These findings demonstrate that a high-strength PM steel with high-toughness can be produced by optimized alloy design and microstructure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. R.J. Bourcier, D.A. Koss, R.E. Smelser, and O. Richmond: Acta Metall., 1986, vol. 34, pp. 2443–53.

    Article  Google Scholar 

  2. N. Chawla and X. Deng: Mater. Sci. Eng. A, 2005, vol. 390, pp. 98–112.

    Article  Google Scholar 

  3. H. Danninger, D. Spoljaric, and B. Weiss: Int. J. Powder Metall., 1997, vol. 33, pp. 43–53.

  4. M. Campos, J. Sicre-Artalejo, J.J. Munoz, and J.M. Torralba: Metall. Mater. Trans. A, 2010, vol. 41A, pp. 1847–54.

    Article  Google Scholar 

  5. M. Gauthier, S. Metcalfe, S. Pelletier, and T.F. Stephenson: Powder Metall., 2011, vol. 54, pp. 628–35.

    Article  Google Scholar 

  6. B.A. Gething, D.F. Heaney, D.A. Koss, and T.J. Mueller: Mater. Sci. Eng. A, 2005, vol. 390, pp. 19–26.

    Article  Google Scholar 

  7. M.W. Wu and K.S. Hwang: Metall. Mater. Trans. A, 2006, vol. 37A, pp. 3577–85.

    Article  Google Scholar 

  8. M.W. Wu, K.S. Hwang, and H.S. Huang: Metall. Mater. Trans. A, 2007, vol. 38A, pp. 1598–607.

    Article  Google Scholar 

  9. X. Deng, G. Piotrowski, N. Chawla, and K.S. Narasimhan: Mater. Sci. Eng. A, 2008, vol. 491, pp. 28–38.

    Article  Google Scholar 

  10. S. St-Laurent and F. Chagnon: Adv. Powder Metall. Part. Mater., 2002, part 5, pp. 121–35.

  11. D. Shanmugasundaram and R. Chandramouli: Mater. Des., 2009, vol. 30, pp. 3444–9.

    Article  Google Scholar 

  12. N. Candela, F. Velasco, and J.M. Torralba: Mater. Sci. Eng. A, 1999, vol. 259, pp. 98–104.

    Article  Google Scholar 

  13. M.W. Wu, L.C. Tsao, G.J. Shu, and B.H. Lin: Mater. Sci. Eng. A, 2012, vol. 538, pp. 135–44.

    Article  Google Scholar 

  14. M.W. Wu, L.C. Tsao, and S.Y. Chang: Mater. Sci. Eng. A, 2013, vol. 565, pp. 196–202.

    Article  Google Scholar 

  15. G. Straffelini, V. Fontanari, A. Molinari: Mater. Sci. Eng. A, 1999, vol. 272, pp. 389–97.

    Article  Google Scholar 

  16. G. Straffelini, A. Molinari, and H. Danninger: Mater. Sci. Eng. A, 1999, vol. 272, pp. 300–9.

    Article  Google Scholar 

  17. H. Danninger, C. Xu, G. Khatibi, B. Weiss, and B. Lindqvist: Powder Metall., 2012, vol. 55, pp. 378–87.

    Article  Google Scholar 

  18. F. Bernier, P. Plamondon, J.P. Baïlon, and G. L’Espèrance: Powder Metall., 2011, vol. 54, pp. 559–65.

    Article  Google Scholar 

  19. A. Bergmark and L. Alzati: Fatigue Fract. Eng. Mater. Struct., 2005, vol. 28, pp. 229–35.

    Article  Google Scholar 

  20. K.V. Sudhakar: Int. J. Fatigue, 2000, vol. 22, pp. 729–34.

    Article  Google Scholar 

  21. H. D’Armas, L. Llanes, J. Peñafiel, J. Bas, and M. Anglada: Mater. Sci. Eng. A, 2000, vol. 277, pp. 291–6.

    Article  Google Scholar 

  22. M.W. Wu and K.S. Hwang: Mater. Sci. Eng. A, 2010, vol. 527, pp. 5421–9.

    Article  Google Scholar 

  23. J.M. Torralba, A. Navarro, and M. Campos, Mater. Sci. Eng. A, 2013, vol. 573, pp. 253–6.

    Article  Google Scholar 

  24. R. Oro, M. Campos, J.M. Torralba, and C. Capdevila: Powder Metall., 2012, vol. 55, pp. 294–301.

    Article  Google Scholar 

  25. J.M. Torralba, R. Oro, and M. Campos: Mater. Sci. Forum, 2011, vol. 672, pp. 3–11.

    Article  Google Scholar 

  26. B. Tougas, C. Blais, F. Chagnon, and S. Pelletier: Metall. Mater. Trans. A, 2013, vol. 44A, pp. 754–65.

    Article  Google Scholar 

  27. B. Tougas, C. Blais, F. Chagnon,and S. Pelletier: Powder Metall., 2012, vol. 55, pp. 348–53.

    Article  Google Scholar 

  28. S. Carabajar, C. Verdu, and R. Fougeres: Mater. Sci. Eng. A, 1997, vol. 232, pp. 80–7.

    Article  Google Scholar 

  29. E. Dudrová, M. Kabatova, and M. Kupkova: Kov. Mater., 2002, vol. 40, pp. 24–33.

    Google Scholar 

  30. H. Abdoos, H. Khorsand, and A.R. Shahani: Mater. Des., 2009, vol. 30, pp. 1026–31.

    Article  Google Scholar 

  31. P. Wang and K.S. Kumar: Mater. Sci. Eng. A, 2009, vol. 519, pp. 184–97.

    Article  Google Scholar 

  32. K.H. Lee, S.G. Park, M.C. Kim, and B.S. Lee: Mater. Sci. Eng. A, 2012, vol. 534, pp. 75–82.

    Article  Google Scholar 

  33. S.J. Wu, G.J. Sun, Q.S. Ma, Q.Y. Shen, and L. Xu: J. Mater. Process. Technol., 2013, vol. 213, pp. 120–8.

    Article  Google Scholar 

  34. K.S. Hwang, C. Hsu, L.H. Cheng, and P.H. Chen: Int. J. Powder Metall., 2012, vol. 48, pp. 35–43.

  35. J.R. Davis: Carbon and Alloy Steels, ASM International, Materials Park, OH, 1996, pp. 269–88.

  36. N. Saeidi and A. Ekrami: Mater. Sci. Eng. A, 2009, vol. 523, pp. 125–9.

    Article  Google Scholar 

  37. M. Momeni, H. Danninger, C. Gierl, E. Dudrová, and A. Arvand: Powder Metall. Prog., 2011, vol. 11, pp. 62–8.

    Google Scholar 

  38. MPIF Standard 35, Materials Standards for PM Structural Parts, 2009 ed., Metal Powder Industries Federation, Princeton, NJ, 2009.

  39. S. Saccarola, M. Zanon, A. Karuppannagounder, and F. Castro: Adv. Powder Metall. Part. Mater., 2011, part 7, pp. 45–53.

  40. I. Donaldson, M. Marucci, and B. Lindsley: Adv. Powder Metall. Part. Mater., 2011, part 7, pp. 54–63.

Download references

Acknowledgments

The authors thank the National Science Council of the Republic of China for their support under contract number NSC 100-2221-E-150-036. Our gratitude is also extended to Lenco Co. for preparing the green specimens and to QMP and Höganäs AB for providing the base powders investigated in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming-Wei Wu.

Additional information

Manuscript submitted March 22, 2013.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, MW., Shu, GJ., Chang, SY. et al. A Novel Ni-Containing Powder Metallurgy Steel with Ultrahigh Impact, Fatigue, and Tensile Properties. Metall Mater Trans A 45, 3866–3875 (2014). https://doi.org/10.1007/s11661-014-2356-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-014-2356-4

Keywords

Navigation