Skip to main content
Log in

A Mechanistic Study of Nanoscale Structure Development, Phase Transition, Morphology Evolution, and Growth of Ultrathin Barium Titanate Nanostructured Films

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

In the present work, an improved method is developed for preparing highly pure ultrathin barium titanate nanostructured films with desired structural and morphological characteristics. In contrast to other approaches, our method can be carried out at a relatively lower temperature to obtain barium titanate ultrathin films free from secondary phases, impurities, and cracks. To reach an in-depth understanding of scientific basis of the proposed process, and in order to disclose the mechanism of formation and growth of barium titanate ultrathin film, in-detail analysis is carried out using XRD, SEM, FE-SEM, and AFM techniques aided by theoretical calculations. The effects of calcining temperature on the nanoscale structure development, phase transition, morphology evolution, and growth mechanism of the ultrathin barium titanate nanostructured films are studied. XRD results indicate that the reaction leading to the formation of the barium titanate initiates at about 873 K (600 °C) and completes at about 1073 K (800 °C). Moreover, secondary phases are not detected in the XRD patterns of the ultrathin films which this observation ensures the phase purity of the ultrathin films. The results show that the ultrathin films are nanothickness and nanostructured leading to the enhancement of rate of diffusion by activating short-circuit diffusion mechanisms. The high rate of the diffusion enhances the rate of the formation of barium titanate and also prevents from the formation of the secondary phases in the final products. SEM and AFM results indicate that the deposited ultrathin films are crack-free exhibiting a dense nanogranular structure. The results indicate that the root-mean square (RMS) roughness of the ultrathin films is in the range of 1.66 to 6.71 nm indicating the surface of the ultrathin films is smooth. RMS roughness also increases with an increase in the calcining temperature which this observation seems to be related to the grain growth process. Finally, based on the observed results, the mechanism of the formation and growth of the ultrathin barium titanate nanostructured films is deeply disclosed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. M.J. Dicken, K. Diest, Y.B. Park, and H.A. Atwater: J. Cryst. Growth, 2007, vol. 300, pp. 330–35.

  2. F. He, W. Ren, G. Liang, P. Shi, X. Wu, X. Chen: Ceram. Int., 2013, vol. 39, pp. S481-85.

    Article  Google Scholar 

  3. R. Ashiri: Vib. Spec., 2013, vol. 66, pp. 24-29.

    Article  Google Scholar 

  4. A. Solanki, J. Shrivastava, S. Upadhyay, S. Choudhary, V. Sharma, P. Sharma, P. Kumar, P. Kumar, Sh. Ehrman, V.R. Satsangi, R. Shrivastav, S. Dass: Curr. Appl. Phys., 2013, vol. 13, pp. 344-50.

    Article  Google Scholar 

  5. L.A. Patil, D.N. Suryawanshi, I.G. Pathan, D.G. Patil: Sens. Actuat., 2014, vol. B195, pp. 643-50.

    Article  Google Scholar 

  6. R. Ashiri: Metall. Mater. Trans. B, 2014, DOI:10.1007/s11663-014-0057-4.

  7. M.C. Gust, N.D. Evans, L.A. Momoda, M.L. Mecartney: J. Am. Ceram. Soc., 1997, vol. 80, pp. 2828-36.

    Article  Google Scholar 

  8. O. Harizanov, A. Harizanova: Mater. Sci. Eng., 2004, vol. B106, pp. 191-95.

    Article  Google Scholar 

  9. H. Kniepkamp, W. Heywang: Z. Angew. Phys., 1954, vol. 6, pp. 385-90.

    Google Scholar 

  10. W. Li, Zh. Xu, R. Chu, P. Fu, J. Hao: J. Alloys Compd., 2009, vol. 482, pp. 137-40.

    Article  Google Scholar 

  11. B. Lee, J. Zhang: Thin Solid Films, 2001, vol. 388, pp. 107-113.

    Article  Google Scholar 

  12. R. Ashiri, A. Nemati, M. Sasani Ghamsari, H. Aadelkhani: J. Non-Cryst. Solids, 2009, vol. 355, pp. 2480–84.

    Article  Google Scholar 

  13. W. Duffy, B.L. Cheng, M. Gabbay: Metall. Mater. Trans. A, 1995, vol. 26A, pp. 1735-39.

    Article  Google Scholar 

  14. W. Jiang, W. Cai, Z. Lin, Ch. Fu: Mater. Res. Bull., 2013, vol. 48, pp. 3092-97.

    Article  Google Scholar 

  15. R. Ashiri, A. Nemati, M. Sasani Ghamsari, S. Sanjabi, and M. Aalipour: Mater. Res. Bull., 2011, vol. 46, pp. 2291-95.

    Article  Google Scholar 

  16. S. Förster, W. Widdra: Surf. Sci., 2010, vol. 604, pp. 2163-69.

    Article  Google Scholar 

  17. C.H. Lei: Thin Solid Films, 2006, vol. 515, pp. 1701-07.

    Article  Google Scholar 

  18. R. Ashiri: Metall. Mater. Trans. A, 2012, vol. 43A, pp. 4414-26.

    Article  Google Scholar 

  19. C.A. Vasilescu, M. Crisan, A.C. Ianculescu, M. Raileanu, M. Gartner, M. Anastasescu, N. Dragan, D. Crisan, R. Gavrila, R. Trusca: Appl. Surf. Sci., 2013, vol. 265, pp. 510-18.

    Article  Google Scholar 

  20. C.K. Tan, G.K.L. Goh, G.K. Lau: Thin Solid Films, 2008, vol. 516, pp. 5545-50.

    Article  Google Scholar 

  21. A. Kaźmierczak-Bałata, J. Bodzenta, M. Krzywiecki, J. Juszczyk, J. Szmidt, P. Firek: Thin Solid Films, 2013, vol. 545, pp. 217-21.

    Article  Google Scholar 

  22. A. Ianculescu, B. Despax, V. Bley, Th. Lebey, R. Gavrila, N. Dragan: J. Eur. Ceram. Soc., 2007, vol. 27, pp. 1129-35.

    Article  Google Scholar 

  23. H.X. Zhang, Mater. Chem. Phys., 2000, vol. 63, pp. 174-77.

    Article  Google Scholar 

  24. T.M. Stawski, W.J.C. Vijselaar, O.F. Göbel, S.A. Veldhuis, B.F. Smith, D.H.A. Blank, J.E. Elshof: Thin Solid Films, 2012, vol. 520, pp. 4394-4401.

    Article  Google Scholar 

  25. M.R. Loghman-Estarki, M. Hajizadeh-Oghaz, H. Edris, R. Shoja Razavi: Cryst. Eng. Commun., 2013, vol. 15, pp. 5898-5909.

    Article  Google Scholar 

  26. D. Guo, Y. Gong, Ch. Wang, Q. Shen, L. Zhang: Mater. Lett., 2013, vol. 95, pp. 55-58.

    Article  Google Scholar 

  27. X. Yang, Zh. Ren, G. Xu, Ch. Chao, Sh. Jiang, Sh. Deng, G. Shen, X. Wei, and G. Han: Ceram. Int., 2014, in press.

  28. D. Levasseur, H.B. El-Shaarawi, S. Pacchini, A. Rousseau, S. Payan, G. Guegan, M. Maglione: J. Eur. Ceram. Soc., 2013, vol. 33, pp. 139-46.

    Article  Google Scholar 

  29. M. Farhadi-Khouzani, Z. Fereshteh, M.R. Loghman-Estarki, and R. Shoja Razavi: J. Sol-Gel Sci. Technol., 2012, vol. 64, pp. 193–99.

  30. R.W. Schwartz, P.G. Clem, J.A. Voigt, E.R. Byhoff, M.V. Stry, Th.J. Headley, N.A. Missert: J. Am. Ceram. Soc., 1999, vol. 82, pp. 2359-67.

    Article  Google Scholar 

  31. H. Kumazawa, K. Masuda: Thin Solid Films, 1999, vol. 353, pp. 144-48.

    Article  Google Scholar 

  32. W. Cai, Ch. Fu, J. Gao: Physica, 2011, vol. B406, pp. 3583-87.

    Article  Google Scholar 

  33. R.N. Das, P. Pramanik: J. Am. Ceram. Soc., 2010, vol. 93, pp. 1869-73.

    Google Scholar 

  34. R. Ashiri, A. Nemati, and M. Sasani Ghamsari: Ceram. Int., 2014, vol. 40, pp. 8613–19.

  35. B.D. Cullity: The Elements of X-Ray Diffraction, Second ed., California, Addison Wesley, 1978.

    Google Scholar 

  36. H.B. Sharma, H.N.K. Sarma: Thin Solid Films, 1998, vol. 330, pp. 178-82.

    Article  Google Scholar 

  37. M. Manso-Silvan, L. Fuentes-Cobas, R.J. Martin-Palma: Surf. Coat. Technol., 2002, vol. 151, pp. 118-21.

    Article  Google Scholar 

  38. Z.G. Hu, Y.W. Li, M. Zhu, Z.Q. Zhu, J.H. Chu: Phys. Lett., 2008, vol. A372, pp. 4521-26.

    Article  Google Scholar 

  39. X. Xing, J. Deng, J. Chen, G. Liu: J. Alloys Compd., 2004, vol. 384, pp. 312-17.

    Article  Google Scholar 

  40. R. Thomas, D.C. Dube, M.N. Kamalasanan, S. Chandra: Thin Solid Films, 1999, vol. 346, pp. 212-25.

    Article  Google Scholar 

  41. C.J. Brinker and G.W. Scherer: Sol-Gel Science, Academic Press, Boston, 1990.

  42. J. Yuk, T. Troczynski: Sensors Actuators, 2003, vol. B94, pp. 290–93.

  43. T.M. Stawski, S.A. Veldhuis, R. Besselink, H.L. Castricum, G. Portale, D.H.A. Blank, J.E. Ten Elshof: J. Phys. Chem., 2012, vol. C116, pp. 425-34.

    Google Scholar 

  44. H-Y. Tian, W-G. Luo, X.-H. Pu, P-S. Qiu, X-Y. He, A-L. Ding: Thermochim. Acta, 2000, vol. 360, pp. 57-62.

    Article  Google Scholar 

  45. F. Baeten, B. Derks: J. Eur. Ceram. Soc., 2006, vol. 26, pp. 589-92.

    Article  Google Scholar 

  46. U. Chaimongkon, A. Thongtha, T. Bongkarn: Curr. Appl. Phys., 2011, vol. 11, pp. S70-76.

    Article  Google Scholar 

  47. M.C. Cheung: Nanostruct. Mater., 1999, vol. 11, pp. 837-44.

    Article  Google Scholar 

  48. W.D. Callister: Fundamentals of Materials Science and Engineering, fifth ed., Wiley, New York, 2004.

    Google Scholar 

  49. M. Baurer, S.-J. Shih, C. Bishop, M.P. Harmer, D. Cockayne, M.J. Hoffmann: Acta Mater., 2010, vol. 58, pp. 290-300.

    Article  Google Scholar 

  50. R. Ashiri: M.Sc. Dissertation, Sharif University of Technology, Tehran, Iran, 2008.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rouholah Ashiri.

Additional information

Manuscript submitted January 25, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ashiri, R. A Mechanistic Study of Nanoscale Structure Development, Phase Transition, Morphology Evolution, and Growth of Ultrathin Barium Titanate Nanostructured Films. Metall Mater Trans A 45, 4138–4154 (2014). https://doi.org/10.1007/s11661-014-2352-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-014-2352-8

Keywords

Navigation