Skip to main content
Log in

Thermal Microstructural Multiscale Simulation of Solidification and Eutectoid Transformation of Hypereutectic Gray Cast Iron

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Although the gray cast iron solidification process has been the subject of several modeling studies, almost all available models appear to deal with only the more widely used hypoeutectic compositions. Models related to hypereutectic gray iron compositions with lamellar (or flake) graphite, and in particular for the proeutectic and eutectoid zones, are hard to find in the open literature. Hence, in the present work, a thermal microstructural multiscale model is proposed to describe the solidification and eutectoid transformation of a slightly hypereutectic composition leading to lamellar graphite gray iron morphology. The main predictions were: (a) temperature evolutions; (b) fractions of graphite, ferrite, and pearlite; (c) density; and (d) size of ferrite, pearlite, and gray eutectic grains; (e) average interlamellar graphite spacing; and (f) its thickness. The predicted cooling curves and fractions for castings with two different compositions and two different pouring temperatures were validated using experimental data. The differences between this model and existing models for hypoeutectic compositions are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Abbreviations

Γ:

Gibbs–Thomson coefficient

δ :

thickness of the pearlite boundary

ΔH :

enthalpy change

T :

undercooling

Θ:

wetting angle

Λ:

average interlamellar spacing

λ :

interlamellar spacing

ρ :

density

σ :

ferrite/cementite interfacial energy

ϕ :

correction factor

A :

nucleation parameter

B :

growth parameter

c :

specific heat

C o :

carbon concentration difference

CE:

Carbon equivalent

CR:

cooling rate

D :

diffusion coefficient

f :

volumetric fraction

f pc :

phase change function

h :

effective heat transfer coefficient

K :

material constant

k :

thermal conductivity

L :

latent heat

m :

growth exponent

η :

liquidus slope

N :

grain density

n :

nucleation exponent

N gl :

number of graphite lamellae

Pe:

function for lamellar eutectics

R :

grain radius

S :

lamellar thickness

\( \bar{S} \) :

average lamellae thickness

T :

temperature

t :

time

T C :

Curie temperature

α :

ferrite

γ :

austenite

θ :

cementite

B:

boundary

c:

white eutectic

cr:

critical

eud:

eutectoid

eut:

eutectic

g:

gray eutectic

Gr:

primary graphite

gr:

graphite

l:

liquid

max:

maximum

p:

pearlite

References

  1. A Modern Casting Staff: Modern Casting, 2012, vol. 12, pp. 25–29.

    Google Scholar 

  2. D.M. Stefanescu: ASM Handbook, ASM International, Materials Park, OH, 2005, p. 34.

    Google Scholar 

  3. D.B. Craig, M.J. Hornung, and T.K. McCluhan: ASM Metals Handbook, vol. 15, ASM International, Materials Park, OH, 2002.

    Google Scholar 

  4. S. Kim, S.L. Cockcroft and A.M. Omran: J. Alloy. Compd., 2009, vol. 476, pp. 728-32.

    Article  Google Scholar 

  5. S. Kim, S.L. Cockcroft, A.M. Omran and H. Hwang: J. Alloy. Compd., 2009, vol. 487, pp. 253-57.

    Article  Google Scholar 

  6. T. Alp, A.A. Wazzan and F. Yilmaz: Arab. J. Sci. Eng., 2005, vol. 30, pp. 163-75.

    Google Scholar 

  7. D. Holmgren, A. Diószegi and I.L. Svensson: China Foundry, 2007, vol. 4, pp. 210-14.

    Google Scholar 

  8. G.L. Rivera, R.E. Boeri and J.A. Sikora: Scripta Mater., 2004, vol. 50, pp. 331-35.

    Article  Google Scholar 

  9. R.L. Hecht, R.B. Dinwiddie and H. Wang: J. Mater. Sci., 1999, vol. 34, pp. 4775-81.

    Article  Google Scholar 

  10. P. Larrañaga and J. Sertucha: Rev. Metal., 2010, vol. 46, pp. 370-80.

    Article  Google Scholar 

  11. F.C. Campbell: Elements of Metallurgy and Engineering Alloys, ASM International, Materials Park, OH, 2008, p. 459.

    Google Scholar 

  12. T. Murakami, T. Inoue, H. Shimura, M. Nakano and S. Sasaki: Mater. Sci. Eng. A, 2006, vol. 432, pp. 113-19.

    Article  Google Scholar 

  13. X. Tong, H. Zhou, L. Ren, Z. Zhang, W. Zhang, R. Cui: Int. J. Fatigue, 2009, vol. 31, pp. 668-77.

    Article  Google Scholar 

  14. A. Kermanpur, S. Mahmoudi and A. Hajipour: J. Mater. Process. Technol., 2008, vol. 206, pp. 62-68.

    Article  Google Scholar 

  15. S.K. Shaha, M.M. Haque and M.A. Maleque: Int. J. Mech. Mat. Eng., 2010, vol. 5, pp. 208-13.

    Google Scholar 

  16. V. Kumar and A. Kumar: Mater. Sci. Forum, 2012, vol. 710, pp. 208-13.

    Article  Google Scholar 

  17. D. Maijer, S.L. Cockcroft and W. Patt: Metall. Mater. Trans. A, 1999, vol. 30A, pp. 2147-58.

    Article  Google Scholar 

  18. W. Kapturkiewicz, E. Fraś and A.A. Burbelko: Arch. Metall. Mater., 2009, vol. 54, pp. 369-80.

    Google Scholar 

  19. M.A. Taha, N.A. El-Mahallawy, A.M. El-Sabbagh, T. El-Benawy and H.F. Hadla: Key Eng. Mat., 2011, vol. 457, pp. 293-98.

    Article  Google Scholar 

  20. M. Jabbari and A. Hosseinzadeh: Comput. Mater. Sci., 2013, vol. 68, pp. 160-65.

    Article  Google Scholar 

  21. J. Campbell: Metall. Mater. Trans. B, 2009, vol. 40B, pp. 786-801.

    Article  Google Scholar 

  22. L. Jianzhong: Mater. Sci. Technol., 1988, vol. 4, pp. 740-44.

    Article  Google Scholar 

  23. Z. Jiyang: China Foundry, 2009, vol. 6, pp. 255-67.

    Google Scholar 

  24. K.A. Jackson and J.D. Hunt: Trans. TMS-AIME, 1966, vol. 236, pp. 1129-42.

    Google Scholar 

  25. P. Magnin and W. Kurz: Acta Metall., 1987, vol. 35, pp. 1119-28.

    Article  Google Scholar 

  26. E. Guzik and D. Kopyciński: Metall. Mater. Trans. A, 2006, vol. 37A, pp. 3057-67.

    Article  Google Scholar 

  27. A.V. Catalina and D.M. Stefanescu: Metall. Mater. Trans. A, 1996, vol. 27A, pp. 4205-10.

    Article  Google Scholar 

  28. A.V. Catalina, S. Sen and D.M. Stefanescu: Metall. Mater. Trans. A, 2003, vol. 34A, pp. 383-94.

    Article  Google Scholar 

  29. Z. Jiyang: China Foundry, 2011, vol. 8, pp. 337-49.

    Google Scholar 

  30. J. Lacaze and V. Gerval: ISIJ Int., 1998, vol. 38, pp. 714-22.

    Article  Google Scholar 

  31. F. Carazo, P. Dardati, D.J. Celentano and L. Godoy: Metall. Mater. Trans. B, 2012, vol. 43B, pp. 1579-95.

    Article  Google Scholar 

  32. A. Catalina, X. Guo, D.M. Stefanescu, L. Chuzhoy, and M.A. Pershing: Trans. AFS, 2000, vol. 108, pp. 247-57.

    Google Scholar 

  33. D.D. Goettsch and J.A. Dantzig: Metall. Mater. Trans. A, 1994, vol. 25A, pp. 1063-79.

    Article  Google Scholar 

  34. D.M. Stefanescu and C. Kanetkar: in Computer Simulation of Microstructural Evolution, D.J. Srolovitz, ed., TMS, Warrendale, PA, 1986, pp. 171–88.

  35. A.S. Pandit: Ph.D. Thesis, University of Cambridge, 2011.

  36. F.D. Carazo: Ph.D. Thesis, Universidad Nacional de Córdova, Argentina, 2012.

  37. D.J. Celentano, M.A. Cruchaga and B.J. Schulz: Int. J. Cast Metals Res., 2005, vol. 18, pp. 237-47.

    Article  Google Scholar 

  38. R.W. Heine: Trans. AFS, 1986, vol. 94, pp. 391-402.

    Google Scholar 

  39. D. M. Stefanescu and S. Katz: ASM Handbook, vol. 15, ASM International, 2008.

  40. D. Glover, C.E. Bates and R. Monroe: Trans. AFS, 1982, vol. 90, pp. 745-57.

    Google Scholar 

  41. Z. Jiyang: China Foundry, 2009, vol. 6, pp. 57-69.

    Google Scholar 

  42. W. Oldfield: ASM Trans., 1966, vol. 59, pp. 945-61.

    Google Scholar 

  43. Y. Koçak, S. Engin, U. Böyük and N. Maraşlı: Curr. Appl. Phys., 2013, vol. 13, pp. 587-93.

    Article  Google Scholar 

  44. S.J. Lee, D.K. Matlock, and C.J. Van Tyne: ISIJ Int., 2011, vol. 51, pp. 1903-11.

  45. V. Gerval and J. Lacaze: ISIJ Int., 2000, vol. 40, pp. 386-92.

    Article  Google Scholar 

  46. W. Kapturkiewicz, E. Fraś and A.A. Burbelko: Mater. Sci. Eng. A, 2005, vol. 413, pp. 352-37.

    Article  Google Scholar 

  47. D. Venugopalan: Metall. Trans. A, 1990, vol. 21A, pp. 913-18.

    Article  Google Scholar 

  48. J. Ågren: Acta Metall., 1982, vol. 30, pp. 841-51.

    Article  Google Scholar 

  49. A.S. Pandit and H.K.D.H. Bhadeshia: Proc. R. Soc. A, 2011, vol. 467, pp. 508–21.

    Article  Google Scholar 

  50. C. Capdevila, F.G. Caballero and C. García de Andrés: ISIJ Int., 2005, vol. 45, pp. 238–47.

    Article  Google Scholar 

  51. D. Celentano and M. Cruchaga: Metall. Mater. Trans. B, 1999, vol. 30B, pp. 731-744.

    Article  Google Scholar 

  52. H. Wolff, S. Engler, A. Schrey and G. Wolf: Adv. Eng. Mater., 2003, vol. 5, pp. 55-58.

    Article  Google Scholar 

  53. D.J. Celentano, M.A. Cruchaga and B.J. Schulz: Metall. Mater. Trans. B, vol. 37B, pp. 253–64.

    Article  Google Scholar 

  54. D.R. Lide: CRC Handbook of Chemistry and Physics, 90th ed., CRC Press/Taylor and Francis, Boca Raton, FL, 2010.

    Google Scholar 

  55. V.E. Schurmann and H. Loblich: Giessereiforschung, 1977, vol. 29, pp. 67-72.

    Google Scholar 

  56. M. Asta, C. Beckermann, A. Karma, W. Kurz, R. Napolitano, M. Plapp, G. Purdy, M. Rappaz and R. Trivedi: Acta Mater., 2009, vol. 57, pp. 941-71.

    Article  Google Scholar 

  57. C. Labrecque and M. Gagné: Trans. AFS, 2000, vol. 108, pp. 31-38.

    Google Scholar 

  58. M.D. Chaudhari, R.W. Heine, C.R. Loper Jr: Trans. AFS, 1974, vol. 82, p. 431–40.

    Google Scholar 

  59. G.L. Rivera, R.E. Boeri, J.A. Sikora: Scripta Mater., 2005, vol. 52, pp. 251-52.

    Article  Google Scholar 

  60. A. Rickert and S. Engler: Mater. Res. Soc. Symp. P., 1985, vol. 34, p. 174.

    Google Scholar 

  61. H. Fredriksson and I. Svensson: Mater. Res. Soc. Symp. P., 1985, vol. 34, p. 275.

    Google Scholar 

  62. A.N. Roviglione and H. Biloni: Adv. Mat. Res., 1997, vol. 4-5, pp. 369-76.

    Article  Google Scholar 

  63. M. Hillert: Scripta Mater., 2005, vol. 52, pp.249-50.

    Article  Google Scholar 

  64. G. Rivera, P.R. Calvillo, R. Boeri, Y. Houbaert and J. Sikora: Mater. Charact., 2008, vol. 59, pp. 1342-48.

    Article  Google Scholar 

  65. K.M. Pedersen, J.H. Hattel and N. Tiedje: Acta Mater., 2006, vol. 54, pp. 5103-14.

    Article  Google Scholar 

  66. C. van de Velde: The Hypereutectic Region of the Iron-Carbon Diagram. http://www.ceesvandevelde.eu/hypereutectic.htm. Accessed 28 Aug 2012.

  67. C. Henschel and R.W. Heine: AFS Cast Metals Research Journal, 1971, vol. 7, pp. 93-104.

    Google Scholar 

  68. P. Delvasto, E. Vásquez, G. Sánchez, F. Torres, and O. Quintero: Revista del Instituto de Investigación de la Facultad de Ingeniería Geológica, Minera, Metalúrgica y Geográfica, 2011, vol. 14.

  69. T. Mizoguchi and J.H. Perepezko: Mater. Sci. Eng. A, 1997, vol. 226-228, pp. 813-17.

    Article  Google Scholar 

  70. K. Edalati, F. Akhlaghi and M. Nili-Ahmadabadi: J. Mater. Process. Technol., 2005, vol. 160, pp. 183-87.

    Article  Google Scholar 

  71. P. Magnin and W. Kurz: Metall. Trans. A, 1988, vol. 19A, pp. 1965-71.

    Article  Google Scholar 

  72. E. Fraś, M. Górny and H.F. López: Metall. Mater. Trans. A, 2005, vol. 36A, pp. 3075-82.

    Google Scholar 

  73. J. Khalil-Allafi and B. Amin-Ahmadi: J. Iron Steel Res. Int., 2011, vol. 18, pp. 34-39.

    Article  Google Scholar 

  74. A. Roula and G.A. Kosnikov: Mater. Lett., 2008, vol. 62, pp. 3796-99.

    Article  Google Scholar 

  75. A.N. Roviglione and J.D. Hermida: Metall. Mater. Trans. B, 2004, vol. 35B, pp. 313-30.

    Article  Google Scholar 

  76. A.A. Baranov and D.A. Baranov: Phys. Met. Metallogr., 2006, vol. 102, pp. 384-90.

    Article  Google Scholar 

  77. L. Sidjanin, R.E. Smallman and J.M. Young: Acta Metall. Mater., 1994, vol. 42, pp. 3149-56.

    Article  Google Scholar 

  78. A. Çetin and A. Kalkanli: Can. Metall. Q., 2005, vol. 44, pp. 1-5.

    Article  Google Scholar 

  79. D.M. Stefanescu, P.A. Curreri and M.R. Fiske: Metall. Trans. A, 1986, vol. 17A, pp. 1121-30.

    Article  Google Scholar 

  80. H. Morrogh: BCIRA J. Res. Dev., 1955, vol. 5, pp.655-73.

    Google Scholar 

  81. F. Mampaey: Adv. Mat. Res., 1997, vol. 4-5, pp. 73-88.

    Article  Google Scholar 

  82. A. Basso, M. Caldera, G. Rivera, and J. Sikora: ISIJ. Int., 2012, vol. 52, 1130–34.

    Article  Google Scholar 

  83. A. Vadiraj, G. Balachandran, M. Kamaraj and E. Kazuya: Mater. Design, 2011, vol. 32, pp. 2438-43.

    Article  Google Scholar 

  84. A.S. Pandit and H.K.D.H. Bhadeshia: Proc. R. Soc. A, 2011, vol. 467, pp. 2948–61.

    Article  Google Scholar 

  85. H. Rafii-Tabar and A. Chirazi: Phys. Rep., 2002, vol. 365, pp. 145-249.

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful for the financial support provided by FONDECYT (Project No. 1130404) and CSIRO Minerals Down Under Flagship. Associate Professor D. Maijer (University of British Columbia) and D. Molenaar (CSIRO) provided valuable feedback on the manuscript. The experimental program associated with this work was carried out at the CSIRO iron foundry by D. Molenaar, T. Kilpatrick, B. Muldowney, and B. Washington.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diego J. Celentano.

Additional information

Manuscript submitted July 1, 2013.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Urrutia, A., Celentano, D.J., Gunasegaram, D.R. et al. Thermal Microstructural Multiscale Simulation of Solidification and Eutectoid Transformation of Hypereutectic Gray Cast Iron. Metall Mater Trans A 45, 3954–3970 (2014). https://doi.org/10.1007/s11661-014-2340-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-014-2340-z

Keywords

Navigation