Skip to main content
Log in

Anisotropy in Mechanical Properties and Fracture Behavior of an Oxide Dispersion Fe20Cr5Al Alloy

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Anisotropy of fracture toughness and fracture behavior of Fe20Cr5Al oxide dispersion-strengthened alloy has been investigated by means of compression tests, hardness tests, and wedge splitting test. The results show a small effect of the compression direction on yield strength (YS) and strain hardening. The YS is minimum for longitudinal direction and maximum for the tangential direction. The transverse plastic strain ratio is similar for tangential and longitudinal directions but very different from that in normal direction. Hardness depends on the indentation plane; it is lower for any plane parallel to the L-T plane and of similar magnitude for the other orthogonal planes, i.e., the L-S and T-S planes. Macroscopically, two failure modes have been observed after wedge-splitting tests, those of LS and TS specimens in which fracture deviates along one or two branches normal to the notch plane, and those of LT, TL, SL, and ST specimens in which fracture propagates along the notch plane. Besides LT and TL specimens present delaminations parallel to L-T plane. Both, the fracture surface of branching cracks and that of the delaminations, show an intergranular brittle fracture appearance. It is proposed that the main cause of the delamination and crack branching is the alignment in the mesoscopic scale of the ultrafine grains structure which is enhanced by the 〈110〉-texture of the material and by the presence in the grain boundaries of both yttria dispersoids and impurity contaminations. An elastoplastic finite element analysis was performed to study what stress state is the cause of the branches and delaminations. It is concluded that the normal to the crack branches and/or the shear stress components could determine the crack bifurcation mechanism, whereas the delamination it seems that it is controlled by the magnitude of the stress component normal to the delamination plane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. A. Kimura, R. Kasada, N. Iwata, H. Kishimoto, J. Isselin, C.H. Zhang, P. Dou, and J.H. Lee: Proc. of the 2009 International Congress Advances in Nuclear Power Plants, Tokyo, Japan, 2009, pp. 9220–25

  2. G.H. Gessinger, O. Mercier, Powder Metall. Int., 10(1978) 203

    Google Scholar 

  3. S. Ukai, M. Harada, H. Okada, M. Inoue, S. Nomura, S. Shikakura, T. Nishida, M. Fujiwara, K. Asabe, J. Nucl. Mater., 204 (1993) 74-80

    Article  Google Scholar 

  4. M.J. Alinger, G.R. Odette, G.E. Lucas, J. Nucl. Mater., 307-311 (2002) 484-489.

    Article  Google Scholar 

  5. R. Kasada, S.G. Lee, J. Isselin, J.H. Lee, T. Omura, A. Kimura, T. Okuda, M. Inoue, S. Ukai, S. Ohnuki, T. Fujisawa, F. Abe, J. Nucl. Mater., 417 (2011) 180-184.

    Article  Google Scholar 

  6. M.S. Joo: Ph.D. Thesis, Pohang University of Science and Technology, Korea, 2012, pp. 38–58

  7. P. Cizek and B. P. Wynne, Materials Science and Engineering: A 230 (1997) 88-94

    Article  Google Scholar 

  8. D. N. Lee, Scripta Metallurgica et Materialia 32 (1995) 1689-1694

    Article  Google Scholar 

  9. C. Capdevila, U. Miller, H. Jelenak and H. Bhadeshia, Materials Science and Engineering A 316 (2001) 161-165

    Article  Google Scholar 

  10. J. Chao, C. Capdevila, M. Serrano, A. García-Junceda, J.A. Jiménez, G. Pimentel, E. Urones-Garrote, Metall. Mater. Trans. A, 2013, 44A(10), pp. 4581–94

    Article  Google Scholar 

  11. E. Brühwiler, and F.H. Wittmann: Eng. Fract. Mech., 1990, vol. 35(123), pp. 117–25

    Article  Google Scholar 

  12. J.F.V. Vincent, G. Jeronimidis, A.A. Kahn and H. Luyten, J. Text. Stud., 22 (1991) 45-57.

    Article  Google Scholar 

  13. ASTM-E-399-09: Annual Book of ASTM Standards, vol. 03.01, ASTM International, West Conshohocken, PA, 2011, pp. 502–34

  14. I. Toda-Caraballo, J. Chao, L.E. Lindgren, C. Capdevila, Script Mater, 62(1) (2010) 41-44

    Article  Google Scholar 

  15. R. Hill: The Mathematical Theory of Plasticity, Ch 12, Oxford University Press, London, 1950, pp 317–21.

    Google Scholar 

  16. G. Baldi, G. Buzzichelli, Met. Sci., 12 (1978) 459-472

    Article  Google Scholar 

  17. W.F. Hosford: Mechanical Behavior of Materials, Chap 6, Cambridge University Press, New York, 2005, pp. 80–98

    Book  Google Scholar 

  18. I. Kozasu, H. Kubota, Trans ISIJ, 11 (1971) 321- 330

    Google Scholar 

  19. W. Dahl: Steel A Handbook for Materials Research and Engineering Fundamentals, vol. 1. Springer Verlag, Berlin, 1972, pp. 247–48.

    Google Scholar 

  20. W.B. Morrison, Metals Technol., 2 (1975) 33-41

    Article  Google Scholar 

  21. B. Mintz, W.B. Morrison, P.I. Welch, and G.J. Davies: in Texture of Materials, vol. 2, G. Gottstein, and K. Lücke, ed., Springer Verlag, Berlin, 1978, pp. 465–74

  22. W.A. Spitzig, R.J. Sober, Metall Trans, 12A (1981) 281-291

    Article  Google Scholar 

  23. S.K. Paul, S. Mishra, Metals Materials and Processes, 4(3) (1992) 189-202

    Google Scholar 

  24. W.F. Hosford: Mechanical Behavior of Materials, Chap 5, Cambridge University Press, New York, 2005, p. 64

    Book  Google Scholar 

  25. W.B. Morrison, B. Mintz, and C. Cochrane: in Preprint of the Paper Presented at the Conf. on “Controlled Processing of HSLA Steels”, York University, Paper No. 1, British Steel Corporation, 1976

  26. D.S. Dablowski, P.J. Konkol, M.F. Baldy, Met. Eng. Quart., 16 (1976) 22-32.

    Google Scholar 

  27. B. Mintz, Met. Technol., 7 (1980) 127-129

    Article  Google Scholar 

  28. W.F. Hosford, Trans. TMS-AIME, 230 (1960) 12-15

    Google Scholar 

  29. J. Gil-Sevillano, Scripta Metall., 20 (1986) 1111-114

    Article  Google Scholar 

  30. J. Gil-Sevillano, J. Alkorta, D. González, S. Van Petegem, U. Stuhr, Adv. Eng. Mat., 10(10) (2008) 951-954

    Article  Google Scholar 

  31. J. Gil-Sevillano, D. González, J. Martínez-Esnaola, Mater Sci Forum, 550 (2007) 75-84.

    Article  Google Scholar 

  32. Private communication with referee’s comments from Editorial Staff of MMTA (T.M. Pollock, Editor), 2013.

  33. A.J. McEvily, Jr., R.H. Bush, Trans. ASM, 55 (1962) 655-666

    Google Scholar 

  34. Y. Kimura, T. Inoue, F. Yin, K. Tsuzaki, Sci., 320 (2008), 1057-1060

    Article  Google Scholar 

  35. M. Jafari, Y. Kimura, K. Tsuzaki, Metall. Mater. Trans. A, 43 (2012), 2453-2465

    Article  Google Scholar 

  36. B.L. Bramfitt and A.R. Marder: in Processing and Properties of Low-carbon Steel, J.M. Gray, ed., Metallurgical Society of AIME, New York, 1972, pp. 191–224.

  37. J.D.G. Groom, J.F. Knott, Met. Sci., 9 (1975) 390-400.

    Article  Google Scholar 

  38. P. Brozzo, G. Buzzichelli, Scripta Mater. 10 (1976) 235-240.

    Article  Google Scholar 

  39. R. Song, D. Ponge, D. Raabe, Acta Mater, 53 (2005) 4881-4892

    Article  Google Scholar 

  40. J. Chao, C. Capdevila-Montes, J.L González-Carrasco, Mater Sci Eng A, 515(1-2) (2009) 190-198

    Article  Google Scholar 

  41. J. Cook, J.E. Gordon, Proc. Roy Soc A, 282A (1964) 508-520

    Article  Google Scholar 

Download references

Acknowledgments

Financial support of the Spanish Ministerio de Educación y Ciencia through a Coordinated Project in the Energy Area of Plan Nacional 2006 (ENE2006-15170-C02) is gratefully acknowledged. The authors are grateful to the Editor, Key-Reader and Reviewers efforts and constructive comments that have significantly improved the original manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Chao.

Additional information

Manuscript submitted April 15, 2013.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chao, J., Capdevila, C. Anisotropy in Mechanical Properties and Fracture Behavior of an Oxide Dispersion Fe20Cr5Al Alloy. Metall Mater Trans A 45, 3767–3780 (2014). https://doi.org/10.1007/s11661-014-2329-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-014-2329-7

Keywords

Navigation