Skip to main content
Log in

Steel Microstructure Effect on Mechanical Properties and Corrosion Behavior of High Strength Low Carbon Steel

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Different thermomechanical treatments were applied to a high strength low carbon steel with a novel chemical composition. As a result, three different microstructures were produced with dissimilar mechanical and corrosion properties. Subsequently, a tempering heat treatment was applied to redistribute the phases in the steel. Microstructure A with 56 pct martensite and 32 pct bainite presented high strength but medium ductility; microstructure C with 95 pct ferrite and 3 pct martensite/austenite resulted in low strength and high ductility, and finally microstructure B with 98 pct bainite and 2 pct martensite/austenite resulted in high strength and ductility. Alternatively the corrosion behavior obtained by polarization curves was characterized in 0.1 M H2SO4, 3 M H2SO4, 3.5 wt pct NaCl, and NS4 solutions resulting in similar magnitudes, while the corrosion behavior acquired by electrochemical impedance spectroscopy had slightly differences in 3 M H2SO4.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. H. Van Long, D. Jean-François, L.D.P. Lam and R. Barbara, J. Constr. Steel Res. 2011, vol. 67, pp. 1001-21.

    Article  Google Scholar 

  2. B.H. Smith, S. Szyniszewski, J.F. Hajjar, B.W. Schafer and S.R. Arwade, J. Constr. Steel Res. 2012, vol. 71, pp. 1-10.

    Article  Google Scholar 

  3. H.K.D.H. Bhadeshia, Prog. Mater. Sci. 2012, vol. 57, pp. 268-435.

    Article  Google Scholar 

  4. A. Bakkaloğlu, Mater. Lett. 2002, vol. 56, pp. 263-72.

    Article  Google Scholar 

  5. R. Song, D. Ponge, D. Raabe, J.G. Speer and D.K. Matlock, Mater. Sci. Eng. A Struct. 2006, vol. 441, pp. 1-17.

    Article  Google Scholar 

  6. P.C.M. Rodriguez, E.V. Pereloma and D.B. Santos, Mater. Sci. Eng. A Struct. 2000, vol. 283, pp. 136-43.

    Article  Google Scholar 

  7. G.R. Ebrahimi, M. Javdani and H. Arabshahi, Braz. J. Phys. 2010, vol. 40, pp. 454-58.

    Article  Google Scholar 

  8. X. Deng and D. Ju, Phys. Procedia 2013, vol. 50, pp. 368-74.

    Article  Google Scholar 

  9. J. Niu, L. Qi, Y. Liu, L. Ma, Y. Feng and J. Zhang, Trans. Nonferrous Met. Soc. 2009, vol. 19(Supplement 3), pp. 573–578.

    Article  Google Scholar 

  10. A.K. Sinha, In Ferrous Physical Metallurgy (Butterworths: Boston, 1989), pp 523-608.

    Google Scholar 

  11. D.M. Drazic: in Modern Aspects of Electrochemistry, J.O’M. Bockris and B.E. Conway, eds., Plenum Press, New York, 1989, p. 69.

  12. W.J. Lorenz and K.E. Heusler: in Corrosion Mechanism, F. Mansfeld, ed., Marcel Dekker, New York, 1987, p. 1.

  13. M. Gomez, P. Valles and S.F. Medina, Mater. Sci. Eng. A Struct. 2011, vol. 528, pp. 4761-73.

    Article  Google Scholar 

  14. J. Majta, R. Kuziak and M. Pietrzyk, J. Mater. Process. Technol. 1998, vol. 80–81, pp. 524-30.

    Article  Google Scholar 

  15. R.D.K. Misra, Z. Jia, R. O’Malley and S.J. Jansto, Mater. Sci. Eng. A Struct. 2011, vol. 528, pp. 8772-80.

    Article  Google Scholar 

  16. S.N. Prasad and D.S. Sarma, Mater. Sci. Eng. A Struct.. 2005, vol. 399, pp. 161-72.

    Article  Google Scholar 

  17. P.R. Spena and D. Firrao, Mater. Sci. Eng. A Struct.. 2013, vol. 560, pp. 208-15.

    Article  Google Scholar 

  18. J. Zrník, T. Kvackaj, A. Pongpaybul, P. Sricharoenchai, J. Vilk and V. Vrchovinsky, Mater. Sci. Eng. A Struct. 2001, vol. 319–321, pp. 321-25.

    Article  Google Scholar 

  19. I.N. Bastos, S.S.M. Tavares, F. Dalard and R.P. Nogueira, Scripta Mater. 2007, vol. 57, pp. 913–16.

    Article  Google Scholar 

  20. S. Bordbar, M. Alizadeh and S.H. Hashemi, Mater. Des. 2013, vol. 45, pp. 597-604.

    Article  Google Scholar 

  21. S. Al-Hassan, B. Mishra, D.L Olson and M.M. Salama, Corrosion 1998, vol. 54, pp. 480–91.

    Article  Google Scholar 

  22. D.A. López, S.N. Simison and S.R. de Sánchez, Electrochim. Acta 2003, vol. 48, pp. 845-54.

    Article  Google Scholar 

  23. K. Videm, J. Kvarekvaal, T. Pérez, and G. Fitzsimons: CORROSION/96, Paper No. 1, NACE, Houston, 1996.

  24. F. Farelas, M. Galicia, B. Brown, S. Nesic and H. Casteneda, Corros. Sci. 2010, vol. 52, pp. 509-17.

    Article  Google Scholar 

  25. R. Chu, W. Chen, S.H. Wang, F. King, T.R. Jack and R.R. Fessler, Corrosion 2004, vol. 60, pp. 275-83.

    Article  Google Scholar 

  26. D. Clover, B. Kinsella, B. Pejcic and R. De Marco, J. Appl. Electrochem. 2005, vol. 35, pp. 139-49.

    Article  Google Scholar 

  27. ASTM: E-407 Standard Practice for Microetching Metals and Alloys, ASTM International, West Conshohocken, 1999.

  28. E. Girault, P. Jacques, P. Harlet, K. Mols, J. Van Humbeeck, E. Aernoudt and F. Delannay, Mater. Charact. 1998, vol. 40, pp. 111-18.

    Article  Google Scholar 

  29. B.L. Li, A. Godfrey, Q.C. Meng, Q. Liu and N. Hansen, Acta Mater. 2004, vol. 52, pp. 1069-81.

    Article  Google Scholar 

  30. ASTM: E18 Standard Test Method for Rockwell Hardness and Rockwell Superficial Hardness of Metallic Materials, ASTM International, West Conshohocken, 2005.

  31. ASTM: E8 Standard Test Method for Tension Testing of Metallic Materials, ASTM International, West Conshohocken, 2005.

  32. T. Gladman: The Physical Metallurgy of Microalloyed Steels (The Institute of Materials of Cambridge, London, 1997).

    Google Scholar 

  33. A. Itman, K.R. Cardoso and H.J. Kestenbach, Mater. Sci. Technol. Ser. 1997, vol. 13, pp. 49-55.

    Article  Google Scholar 

  34. H. Kejian and T.N. Baker, Mater. Sci. Eng. A Struct. 1993, vol. 169, pp. 53-65.

    Article  Google Scholar 

  35. W. Wang and H.R. Wang, Mater. Lett. 2007, vol. 61, pp. 2227-30.

    Article  Google Scholar 

  36. P. Maugis and M. Gouné, Acta Mater. 2005, vol. 53, pp. 3359-67.

    Article  Google Scholar 

  37. Y. Kang, Y. Hao, F. Jie, K. Wang, and Z. Wang: Mater. Sci. Eng. A Struct., 2003, vol. 351, pp. 265-71.

  38. ASTM: E 112 Standard Test Methods for Determining Average Grain Size, ASTM International, West Conshohocken, 2004.

  39. A.K. Sinha: Ferrous Physical Metallurgy. (Butterworths, Boston, 1989).

    Google Scholar 

  40. S. Nagakura, Y. Hirotsu, M. Kusnoki, Susuki. T. and Y. Nakamura, Metall. Trans. A, 1983, vol. 14A, pp. 1025-31.

    Article  Google Scholar 

  41. B.K. Jha and N.S. Mishra, Mater. Sci. Eng. A Struct. 1999, vol. 263, pp. 42-55.

    Article  Google Scholar 

  42. R. Feng, S. Li, Z. Li and L. Tian, Mater. Sci. Eng. A Struct. 2012, vol. 558, pp. 205-10.

    Article  Google Scholar 

  43. A.J. Bard and L.R. Faulkner: Electrochemical Methods Fundamentals and Applications. Wiley, New York, 2001.

    Google Scholar 

  44. A. Davydov, K.V. Rybalka, L.A. Beketaeva, G.R. Engelhardt, P. Jayaweera and D.D. Macdonald, Corros. Sci. 2005, vol. 47, pp. 195-215.

    Article  Google Scholar 

  45. J.O.M. Bockris and A.K.N. Reddy, Modern Electrochemistry, Kluwer/Plenum: New York, 2000, p 1669.

    Google Scholar 

  46. K.H. Kim, S.H. Lee, N.D. Nam and J.G. Kim, Corros. Sci. 2011, vol. 53, pp. 3576-87.

    Article  Google Scholar 

  47. G.V. Karpenko, A.K. Mindyuk, O.P. Savistskaya, and Yu.I. Babei: Sov. Mater. Sci., 1970, vol. 6, pp. 409–11.

Download references

Acknowledgments

Financial support from Consejo Nacional de Ciencia y Tecnología (CONACYT, México) Ph.D. scholarship to J.I.B.-F is gratefully acknowledged. In addition, the authors want to thank Ivan Puente Lee from Facultad de Química, UNAM, for his help in the SEM and TEM work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Homero Castaneda.

Additional information

Manuscript submitted August 21, 2013.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barraza-Fierro, J.I., Campillo-Illanes, B., Li, X. et al. Steel Microstructure Effect on Mechanical Properties and Corrosion Behavior of High Strength Low Carbon Steel. Metall Mater Trans A 45, 3981–3994 (2014). https://doi.org/10.1007/s11661-014-2320-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-014-2320-3

Keywords

Navigation