Skip to main content
Log in

Finite Element and Experimental Analysis of Closure and Contact Bonding of Pores During Hot Rolling of Steel

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The closure and contact bonding behavior of internal pores in steel slabs during hot rolling was studied using experiments and the finite element method (FEM). Effects of pore size and shape were investigated, and three different cases of pore closure results were observed: no closure, partial closure, and full closure. The FEM results well reproduced various closure events. Bonding strengths of unsuccessfully closed pores, measured by tensile tests, showed critical effects. Also, there was a difference in bonding strengths of several fully closed pores. Fracture surfaces showed that welded regions could be divided into three (not, partially, and perfectly) welded regions. The pressure–time curves obtained from the FEM results indicate that pore surface contact time and deformed surface length are important parameters in pore welding. Pore size, pore shape, time of pressure contact, and deformed surface length should be considered to completely eliminate pores in final products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. L. Leduc, T. Nadarajah, and C.M. Sellars: Met. Technol., 1980, vol. 7, pp. 269-73.

    Article  Google Scholar 

  2. L. Jia, D. Xu, M. Li, J. Guo, and H. Fu: Met. Mater. Int., 2012, vol. 18, pp. 55-62.

    Article  Google Scholar 

  3. B.-H. Son, J.-G. Hong, Y.-T. Hyun, S.-C. Bae, and S.-E. Kim: Korean J. Met. Mater., 2012, vol. 50, pp. 100–06.

    Google Scholar 

  4. Y. Nadot, J. Mendez, N. Ranganathan, and S. Beranger: Fatigue Fract. Eng. Mater. Struct., 1999, vol. 22, pp. 289-300.

    Article  Google Scholar 

  5. P. Haušild, C. Berdin, P. Bompard, and N. Verdière: Int. J. Press. Vessels Pip., 2001, vol. 78, pp. 607-16.

    Article  Google Scholar 

  6. Y. Nadot, J. Mendez, and N. Ranganathan: Int. J. Fatigue, 2004, vol. 26, pp. 311-19.

    Article  Google Scholar 

  7. Y. Uematsu, T. Kakiuchi, K. Tokaji, K. Nishigaki, and M. Ogasawara: Mater. Sci. Eng. A, 2013, vol. 561, pp. 386-93.

    Article  Google Scholar 

  8. J.-J. Park: Met. Mater. Int., 2013, vol. 19, pp. 259–70.

    Article  Google Scholar 

  9. E. Erman, N.M. Medei, A.R. Roesch, and D.C. Shah: J. Mech. Work. Technol., 1989, vol. 19, pp. 165-94.

    Article  Google Scholar 

  10. M. Nakasaki, I. Takasu, and H. Utsunomiya: J. Mater. Process. Technol., 2006, vol. 177, pp. 521-24.

    Article  Google Scholar 

  11. Y.D. Kim, J.R. Cho, and W.B. Bae: J. Mater. Process. Technol., 2011, vol. 211, pp. 1005-13.

    Article  Google Scholar 

  12. Y.S. Lee, S.U. Lee, C.J. Van Tyne, B.D. Joo, and Y.H. Moon: J. Mater. Process. Technol., 2011, vol. 211, pp. 1136-45.

    Article  Google Scholar 

  13. G. Banazek, and A. Stefanik: J. Mater. Process. Technol., 2006, vol. 177, pp. 238-42.

    Article  Google Scholar 

  14. X.-X. Zhang, Z.-S. Cui, W. Chen, and Y. Li: J. Mater. Process. Technol., 2009, vol. 209, pp. 1950-59.

    Article  Google Scholar 

  15. W. Deng, D.-W. Zhao, X.-M. Qin, L.-X. Du, X.-H. Gao, and G.-D. Wang: Comp. Mater. Sci., 2009, vol. 42, pp. 439–47.

  16. M.C. Lee, S.M. Jang, J.H. Cho, and M.S. Joun: Int. J. Mod. Phys. B, 2008, vol. 22, pp. 5768-73.

    Article  Google Scholar 

  17. C.H. Jeon, S.W. Han, B.D. Joo, C.J. Van Tyne, and Y.H. Moon: Met. Mater. Int., 2013, vol. 19, pp. 1069-76.

    Article  Google Scholar 

  18. E.-Y. Kim, J.-H. Cho, H.-W. Kim, and S.-H. Choi: Korean J. Met. Mater., 2013, vol. 51, pp. 41–50.

    Google Scholar 

  19. M. Rezayat, and A. Akbarzadeh: Met. Mater. Int., 2012, vol. 18, pp. 827-32.

    Article  Google Scholar 

  20. A. Wang, P.F. Thomson, and P.D. Hodgson: J. Mater. Process. Technol., 1996, vol. 60, pp. 95-102.

    Article  Google Scholar 

  21. M.A. Chaaban and J.M. Alexander: Proc. Mach. Tool Des. Res. Conf. 17th, vol. 3, 1976, pp. 633–45.

  22. K. Min, K. Kim, S.K. Kim, and D.-J. Lee: Met. Mater. Int., 2012, vol. 18, pp. 341–49.

    Article  Google Scholar 

  23. J-S. Kim, K.S. Lee, Y-N. Kwon, Y-S. Lee, S. Lee, and Y.W. Chang: Korean J. Met. Mater., 2013, vol. 51, pp. 547-57.

    Google Scholar 

  24. S. Lee, J-S. Lee, Y-B. Kim, G-A. Lee, S-P. Lee, I-S. Son, J-K. Lee, and D-S. Bae: Korean J. Met. Mater., 2013, vol. 51, pp. 655-64.

    Google Scholar 

  25. C.Y. Park, and D.Y. Yang: J. Mater. Process. Technol., 1996, vol. 57, pp. 129-40.

    Article  Google Scholar 

  26. C.Y. Park, and D.Y. Yang: J. Mater. Process. Technol., 1997, vol. 72, pp. 32-41.

    Article  Google Scholar 

  27. K. Chen, Y. Yang, G. Shao, and K. Liu: Comp. Mater. Sci., 2012, vol. 51, pp. 72-77.

    Article  Google Scholar 

  28. H. Kakimoto, T. Arikawa, Y. Takahashi, T. Tanaka, and Y. Imaida: J. Mater. Process. Technol., 2010, vol. 210, pp. 415-22.

    Article  Google Scholar 

  29. A. Sjöström: J. Mech. Work. Technol., 1982, vol. 6, pp. 347-60.

    Article  Google Scholar 

  30. A. Chaijaruwanich, R.J. Dashwood, P.D. Lee, and H. Nagaumi: Acta Mater., 2006, vol. 54, pp. 5185-94.

    Article  Google Scholar 

  31. J. Chen, K. Chandrashekhara, C. Mahimkar, S.N. Lekakh, and V.L. Richards: J. Mater. Process. Technol., 2011, vol. 211, pp. 245-55.

    Article  Google Scholar 

  32. S. Shida: J. Jpn. Soc. Technol. Plast., 1969, vol. 10, pp. 610-17.

    Google Scholar 

  33. H.L. Yu, X.H. Liu, X.W. Li, and A. Godbole, Metall. Mater. Trans. A, 2014, vol. 45, pp. 1001-09.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by POSCO. The simulation was supported by Grant No. KSC-2012-C2-09 from Korea Institute of Science and Technology Information.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyoung Seop Kim.

Additional information

Manuscript submitted October 15, 2013.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Joo, SH., Jung, J., Chun, M.S. et al. Finite Element and Experimental Analysis of Closure and Contact Bonding of Pores During Hot Rolling of Steel. Metall Mater Trans A 45, 4002–4011 (2014). https://doi.org/10.1007/s11661-014-2319-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-014-2319-9

Keywords

Navigation