Skip to main content
Log in

Liquidus Projection of the Ag-Sn-Te Ternary System

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The Ag-Sn-Te ternary system is of interest to thermoelectric applications and its liquidus projection is determined in this study. Forty Ag-Sn-Te ternary alloys are prepared and their primary solidification phases are determined. These different primary solidification phase regions include three terminal solid solutions: Ag, Sn, and Te; six binary intermediate phases: SnTe, β-Ag5Te3, Ag1.9Te, Ag2Te (assuming no phase transformation), ζ-Ag4Sn, and ε-Ag3Sn; and one ternary compound, AgSnTe2. These data, together with the phase diagrams of the three constituent binary systems, are employed to construct the univariant lines of the liquidus projection. The temperature-descending directions of these univariant lines are determined using thermal analysis results and mass balance concept. The types of invariant reactions and the reaction temperatures are determined from the temperature-descending directions of the univariant lines and by thermal analysis. There are two Class I reactions, five Class II reactions, and one Class III reaction. The invariant reaction with the highest reaction temperature is L + Ag = Ag2Te + ε-Ag3Sn, at 992.7 ± 4 K (719.5 ± 4 °C), and that with the lowest reaction temperature is L = Sn + ε-Ag3Sn + SnTe, at 494.2 ± 4 K (221 ± 2 °C).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. M. Zebarjadi, K. Esfarjani, M. S. Dresselhaus, Z. F. Ren and G. Chen: Energy Environ. Sci., 2012, vol. 5, pp. 5147-5162.

    Article  Google Scholar 

  2. H.-J. Wu, S.-W. Chen, T. Ikeda and G.J. Snyder: Acta Mater., 2012, vol. 60, pp. 1129–1138.

    Article  Google Scholar 

  3. J. Q. Guo, H. Y. Geng, T. Ochi, S. Suzuki, M. Kikuchi, Y. Yamaguchi and S. Ito: J. Electron. Mater., 2012, vol. 41(6), pp. 1036-1042.

    Article  Google Scholar 

  4. A. D. LaLonde, Y. Pei, H. Wang and G. J. Snyder: Mater. Today, 2011, vol. 14(11), pp. 526-532.

    Article  Google Scholar 

  5. H.-J. Wu and S.-W. Chen: Acta Mater., 2011, vol. 59, pp. 6463–6472.

    Article  Google Scholar 

  6. A. Shakouri: Annu. Rev. Mater. Res., 2011, vol. 41, pp. 399-431.

    Article  Google Scholar 

  7. L. E. Bell: Science, 2008, vol. 321(5895), pp. 1457-1461.

    Article  Google Scholar 

  8. S. M. Kauzlarich, S. R. Brown and G. J. Snyder: Dalton Trans., 2007, vol. 36(21), pp. 2099-2107.

    Article  Google Scholar 

  9. M. S. Dresselhaus, G. Chen, M. Y. Tang, R. Yang, H. Lee, D. Wang, Z. Ren, J.-P. Fleurial and P. Gogna: Adv. Mater., 2007, vol. 19, pp. 1043-1053.

    Article  Google Scholar 

  10. C.N. Liao and Y.C. Huang: J. Mater. Res.,2010, vol. 25,pp. 391-395.

    Article  Google Scholar 

  11. E. I. Rogacheva: J. Phys. Chem. Solids, 2005, vol. 66(11), pp. 2104-2111.

    Article  Google Scholar 

  12. J. Wu, J. Yang, H. Zhang, J. Zhang, S. Feng, M. Liu, J. Peng, W. Zhu, and T. Zou: J. Alloys Compd., 2010, vol. 507(1), pp. 167-171.

    Article  Google Scholar 

  13. J. Androulakis, R. Pcionek, E. Quarez, J.-H. Do, H. Kong, O. Palchik, C. Uher, J. J. D’Angelo, J. Short, T. Hogan, and M. G. Kanatzidis: Chem. Mater., 2006, vol. 18, pp. 4719-4721.

    Article  Google Scholar 

  14. T.P. Hogan, A.D. Downey, J. Short, J. D’Angelo, E. Quarez, J. Androulakis, P.F.P. Poudeu, M.G. Kanatzidis, E. Timm, K. Sarbo, and H. Schock: Mater. Res. Soc. Symp. Proc., J. Yang, T.P. Hogan, R. Funahashi, and G.S. Nolas, eds., 2006, vol. 886, pp. 487–92.

  15. H. J. Liu, Y.-G. Yan, X.-F. Tang, L.-L. Yin and Q.-J. Zhang: Acta Phys., 2007, vol. 56 (12), pp. 7309-14.

    Google Scholar 

  16. V. A. Kulbachinskii, A. U. Kaminskii, P. M. Tarasov, and P. Lostak: Phys Solid State, 2006, vol. 48(5), pp. 833-840.

    Article  Google Scholar 

  17. H. Hahn and H. Schulze: Naturwissenschaften, 1964, vol. 51(22), pp. 534.

    Article  Google Scholar 

  18. R. Blachnik, G. Bolte, and B. Gather: Z. Metallkde., 1978, vol. 69(8), pp. 530-533.

    Google Scholar 

  19. R. Blachnik and B. Gather: J. Less Common Met., 1978, vol. 60, pp. 25-32.

    Article  Google Scholar 

  20. G. Effenberg and B. Grieb: Ternary Alloys, VCH, New York, NY, 1988, vol. 2, pp. 590–601.

    Google Scholar 

  21. L.M. de Chalbaud, B.J. Fernandez, R. Davila, D.B. Bracho, J.M. Delgado, and A.E. Mora: Inst. Phys. Conf. Ser., 1998, vol. 152, pp. 107–110.

    Google Scholar 

  22. F. Romermann and R. Blachnik: Z. Metallkde., 2011, vol. 92(4), pp. 336-344.

    Google Scholar 

  23. F. N. Rhines, “Phase diagrams in metallurgy: Their development and application”, McGraw-Hill, New York, 1956.

    Google Scholar 

  24. O. F. Devereux, “Topics in metallurgical thermodynamics”, Krieger, Melbourne, Florida, 1983.

    Google Scholar 

  25. Y.-C. Huang, S.-W. Chen, C.-Y. Chou, W. Gierlotka: J. Alloys Compd., 2009, vol. 477(1-2), pp. 283-290.

    Article  Google Scholar 

  26. H.-J. Wu and S.-W. Chen: J. Alloys Compd., 2011, vol. 509, pp. 656-668.

    Article  Google Scholar 

  27. I. Karakaya and W. T. Thompson: Binary Alloy Phase Diagram, 1991, 1, pp. 94–97.

    Google Scholar 

  28. C.-S. Oh, J.-H. Shim, B.-J. Lee and D. N. Lee: J. Alloys Compd., 1996, vol. 238, pp. 155-166.

    Article  Google Scholar 

  29. I. Karakaya and W. T. Thompson: J. Phase Equilib., 2010, vol. 12(1), pp. 56–63.

    Article  Google Scholar 

  30. W. Gierlotka: J. Alloys Compd., 2009, vol. 485, pp. 231-235.

    Article  Google Scholar 

  31. R. C. Sharma and Y. A. Chang: Bull. Alloy Phase Diagr., 1986, vol. 7(1), pp. 72–80.

    Article  Google Scholar 

  32. K.-C. Hsieh, M. S. Wei and Y. A. Chang. Z. Metallkd.,1983, vol.74, pp. 330-337.

    Google Scholar 

  33. P. E. J. Flewitt and R. K. Wild: “Physical methods for materials characterization.” Institute of Physics Publishing, Bristol, 1994.

    Google Scholar 

  34. S.-W. Chen, C.-C. Huang and J.-C. Lin: Chem. Eng. Sci., 1995, vol. 50(3), pp. 417-431.

    Article  Google Scholar 

  35. W. J. Boettinger, U. R. Kattner, K.-W. Moon and J. H. Perepezko, “DTA and heat-flux DSC measurements of alloy melting and freezing”, NIST, Washington DC, 2006.

    Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial support of the National Science Council of Taiwan (NSC99-2221-E-093-MY3).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jui-shen Chang.

Additional information

Manuscript submitted June 28, 2013.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chang, Js., Chen, Sw., Chiu, Kc. et al. Liquidus Projection of the Ag-Sn-Te Ternary System. Metall Mater Trans A 45, 3728–3740 (2014). https://doi.org/10.1007/s11661-014-2318-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-014-2318-x

Keywords

Navigation