Skip to main content
Log in

Thermodynamic Modeling of the Al-Ti-V Ternary System

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The sub-binary systems Al-Ti, Ti-V, and Al-V are reviewed and adopted from the previous assessments, the thermodynamic analysis of the Al-Ti-V ternary system is performed by the CALPHAD approach, and a set of self-consistent thermodynamic parameters of the ternary system are obtained. Furthermore, the isothermal sections of this system at 1073 K, 1173 K, 1273 K, 1373 K, and 1473 K (800 °C, 900 °C, 1000 °C, 1100 °C, and 1200 °C) and the ternary invariant equilibria are calculated and compared with the corresponding experimental data, and all are in good agreement with most of the experimental results. Thus, the optimized thermodynamic parameters in this study may provide more accurate guidance to develop the new alloys involving it.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. D. Shechtman, M. Blackburn, and H. Lipsitt: Metall. Trans., 1974, vol. 5, pp. 1373–81.

    Article  Google Scholar 

  2. H.A. Lipsitt, D. Shechtman, and R.E. Schafrik: Metall. Trans. A, 1975, vol. 6A, pp. 1991–96.

    Article  Google Scholar 

  3. M.J. Blackburn and M.P. Smith: Titanium alloys of the TiAl type. U.S. Patents 4294615 A, 1981.

  4. D.J. McPherson and W. Rostoker: Technical Report No. 54-101, WADC, 1954.

  5. J. Rausch, F. Crossley, and H. Kessler: J. Met., 1956, vol. 8, pp. 211–14.

    Google Scholar 

  6. C.B. Jordan and P. Duwez: Trans. ASM, 1956, vol. 48, pp. 783–94.

    Google Scholar 

  7. P.A. Farrar and H. Margolin: Trans. AIME, 1961, vol. 221, p. 197.

    Google Scholar 

  8. F. Hayes: J. Phase Equilibria, 1995, vol. 16, pp. 163–76.

    Article  Google Scholar 

  9. F. Zhang: “A Thermodynamic and Experimental Study of the Titanium-Aluminium-Vanadium (Ti-Al-V) Ternary System”, University of Wisconsin–Madison, Madison, WI, 1997.

  10. H. Wang, N. Warnken, and R. Reed: Mater. Sci. Eng. A, 2010, vol. 528, pp. 622–30.

    Article  Google Scholar 

  11. A. Kostov and D. Živković: J. Alloys Compd., 2008, vol. 460, pp. 164–71.

    Article  Google Scholar 

  12. V. Witusiewicz, A. Bondar, U. Hecht, S. Rex, and T.Y. Velikanova: J. Alloys Compd., 2008, vol. 465, pp. 64–77.

    Article  Google Scholar 

  13. G. Ghosh: J. Phase Equilibria, 2002, vol. 23, pp. 310–28.

    Article  Google Scholar 

  14. W. Gong, Y. Du, B. Huang, R. Schmid-Fetzer, C. Zhang, and H. Xu: Z. Metallkd., 2004, vol. 95, pp. 978–86.

    Article  Google Scholar 

  15. H. Okamoto: J. Phase Equilibria, 1993, vol. 14, pp. 120–21.

    Article  Google Scholar 

  16. U. Kattner, J.-C. Lin, and Y. Chang: Metall. Trans. A, 1992, vol. 23A, pp. 2081–90.

    Article  Google Scholar 

  17. F. Zhang, S. Chen, Y. Chang, and U. Kattner: Intermetallics, 1997, vol. 5, pp. 471–82.

    Article  Google Scholar 

  18. I. Ohnuma, Y. Fujita, H. Mitsui, K. Ishikawa, R. Kainuma, and K. Ishida: Acta Mater., 2000, vol. 48, pp. 3113–23.

    Article  Google Scholar 

  19. J. Braun and M. Ellner: Metall. Mater. Trans. A, 2001, vol. 32A, pp. 1037–47.

    Article  Google Scholar 

  20. J.C. Schuster and M. Palm: J. Phase Equilibria Diffusion, 2006, vol. 27, pp. 255–77.

    Article  Google Scholar 

  21. L. Kaufman and H. Bernstein: Academic Press, Inc., New York, NY, 1970, vol. 4, p. 334.

    Google Scholar 

  22. J.L. Murray: J. Phase Equilibria, 1981, vol. 2, pp. 48–55.

    Google Scholar 

  23. J. Murray: J. Phase Equilibria, 1989, vol. 10, pp. 351–57.

    Google Scholar 

  24. K. Richter and H. Ipser: Z. Metallkd., 2000, vol. 91, pp. 383–88.

    Google Scholar 

  25. K. Hashimoto, H. Doi, and T. Tsujimoto: Trans. Jpn. Inst. Met., 1986, vol. 27, pp. 741–49.

    Article  Google Scholar 

  26. M. Paruchuri and T. Massalski: Materials Research Society Proceedings, vol. 213, Materials Research Society, Warrendale, PA, 1990.

  27. P.K. Chaudhury and H. Rack: Scripta Metall., 1992, vol. 26, pp. 691–95.

    Article  Google Scholar 

  28. T. Ahmed and H. Flower: Mater. Sci. Technol., 1994, vol. 10, pp. 272–88.

    Article  Google Scholar 

  29. Y.Q. Zhang and Y. Du: Mater. Sci. Eng. Powder Metall., 2006, vol. 11, pp. 146–48 (in Chinese).

    Article  Google Scholar 

  30. W.S. Chang and B. Muddle: Metall. Mater. Trans. A, 2003, vol. 34A, pp. 491–501.

    Article  Google Scholar 

  31. G. Shao, P. Tsakiropoulos, and A. Miodownik: Mater. Sci. Eng. A, 1996, vol. 216, pp. 1–10.

    Article  Google Scholar 

  32. G. Shao and P. Tsakiropoulos: Phil. Mag. A, 1997, vol. 75, pp. 657–76.

    Article  Google Scholar 

  33. A.T. Dinsdale: CALPHAD, 1991, vol. 15, pp. 317–425.

    Article  Google Scholar 

  34. M. Hillert: J. Alloys Compd., 2001, vol. 320, pp. 161–76.

    Article  Google Scholar 

  35. H. Erschbaumer, R. Podloucky, P. Rogl, G. Temnitschka, and R. Wagner: Intermetallics, 1993, vol. 1, pp. 99–106.

    Article  Google Scholar 

  36. W. Wolf, R. Podloucky, P. Rogl, and H. Erschbaumer: Intermetallics, 1996, vol. 4, pp. 201–09.

    Article  Google Scholar 

  37. Y. Hao, D. Xu, Y. Cui, R. Yang, and D. Li: Acta Mater., 1999, vol. 47, pp. 1129–39.

    Article  Google Scholar 

  38. R. Yang, Y. Hao, Y. Song, and Z.X. Guo: Z. Metallkd., 2000, vol. 91, pp. 296–301.

    Google Scholar 

  39. I.I. Kornilov, M.A. Volkova, and E.N. Pylaeva: Proc. 6th Conf. Metal Chemistry and Metallography, 1965, pp. 92–97 (in Russian).

  40. I.I. Kornilov and M.A. Volkova: Proc. Tuanovye Splavy Nov. Tekh., Mater., 1966, pp. 78–89 (in Russian).

  41. C. Bale, P. Chartrand, S. Degterov, G. Eriksson, K. Hack, R. Ben Mahfoud, J. Melançon, A. Pelton, and S. Petersen: CALPHAD, 2002, vol. 26, pp. 189–228.

    Article  Google Scholar 

  42. T. Ahmed, H. Rack, and H. Flower: Mater. Sci. Technol., 1994, vol. 10, pp. 681–90.

    Article  Google Scholar 

Download references

Acknowledgments

Thanks are due to Dr. S.L. Chen, CompuTherm LLC, and Professor J.Y. Zhang, Shanghai University, for the helpful discussions of this work. This work is financially supported by the National Nature Science Foundation of China (Grant Nos. 51074105, 51374142 and 51225401), the Science and Technology Fund of Scientific Committee of Shanghai (Grant Nos. 11520500100 and 11DZ2283400), and the open project of the State Key Laboratory of New Ferrous Metallurgy Technology (Grant No. KF12-05).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chonghe Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, X., Gui, N., Qiu, A. et al. Thermodynamic Modeling of the Al-Ti-V Ternary System. Metall Mater Trans A 45, 4155–4164 (2014). https://doi.org/10.1007/s11661-014-2317-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-014-2317-y

Keywords

Navigation