Skip to main content
Log in

Investigation on In Situ Tensile Behavior of Superalloy Bicrystals with Different GB Misorientations

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The in situ tensile behavior of nickel-base superalloy bicrystals with different grain boundary (GB) misorientations of 2 deg, 10 deg, and 16 deg was preliminarily studied. Among three kinds of bicrystals, the bicrystal with 2 deg misorientation was characterized with continuous slow strain hardening as well as crack initiation and propagation along the SB-matrix interface due to the full development of slip bands (SBs). In contrast, GBs in 10 deg and 16 deg bicrystals could effectively impede the SBs. Thus, the crack initiation occurred along the carbide/matrix interface, and more specifically cracks in 16 deg bicrystal fully propagated along the GB. Irregular GB in superalloy bicrystals consists of three types of GB segments. Among them, parallel GB is distinctly beneficial to GB strengthening and improving the yield strength of bicrystal. The statistical results showed that the proportion of parallel GB in the 10 deg bicrystal is the highest. Meanwhile, the GB in 10 deg bicrystal possesses higher resistance to crack extending, which can be attributed to its highest carbide fraction at the GB. Thus, its fracture exhibited a mixed mode of both GB and SB cracking.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. E.W. Ross and K.S.O. Hara: in Superalloy, J.K. Tien, ed., TMS, Warrendale, PA, 1996, pp. 19–25.

  2. D.M. Shah and A. Cetel: in Superalloy, T.M. Pollock, ed., TMS, Warrendale, PA, 1980, pp. 295–304.

  3. C.G. Robert, S.L. Semiatin, A.D. Rollett, Scripta Mater. 56 (2007) 899–902.

    Article  Google Scholar 

  4. Y.Z. Zhou, A. Volek, Scripta Mater. 56 (2007) 537–40.

    Article  Google Scholar 

  5. V.G. Gavriljuk, H. Berns, C. Escher, N.I. Glavatskaya, A. Sozinov, Y.N. Petrov, Mater. Sci. Eng. A271 (1999) 14–21.

    Article  Google Scholar 

  6. E.O. Hall, Proc. Phys. Soc. Lond.. B64 (1951) 747–53.

    Article  Google Scholar 

  7. N.J. Petch, J. Iron. Steel. Inst. 174 (1953) 25–28.

    Google Scholar 

  8. D. Farkas, L. Patrick, Philos. Mag. 89 (2009) 3435–50.

    Article  Google Scholar 

  9. J. Gemperlová, A. Jacques, A. Gemperle, T. Vystavel, N. Zárubová, M. Janecek, Mater. Sci. Eng. A324 (2002) 183–89.

    Article  Google Scholar 

  10. S. Zaefferer, J.C. Kuo, Z. Zhao, M. Winning, D. Raabe, Acta Mater. 51 (2003) 4719–35.

    Article  Google Scholar 

  11. Z.F. Zhang, Z.G. Wang, Y.M. Hu, Scripta Mater. 40 (1999) 1353–58.

    Article  Google Scholar 

  12. Z.F. Zhang, Z.G. Wang, Acta Mater. 51 (2003) 347–64.

    Article  Google Scholar 

  13. Z.F. Zhang, Z.G. Wang, Prog. Mater. Sci. 53 (2008) 1025–99.

    Article  Google Scholar 

  14. Y.Z. Guo, F.D. Li, T. Suo, Z.B. Tang, Y.L. Li, Mech Mater. 62 (2013) 80–89.

    Article  Google Scholar 

  15. Y.Z. Zhou, A. Volek, Scripta Mater. 54 (2006) 2169–74.

    Article  Google Scholar 

  16. A. Wisniewski, J. Beddoes, Mater. Sci. Eng. A510-511 (2009) 266–72.

    Article  Google Scholar 

  17. J.B. Wahl, K. Harris, and T.L. Moore: Proc. Advanced Materials and Processes for Gas Turbines, 2002, pp. 129–35.

  18. V.G. Sursaeva, V.G. Glebovsky, Y.M. Schulga, L.S. Schvindlerman, Scripta Metall. 19 (1985) 411–14.

    Article  Google Scholar 

  19. Y.M. Hu, W. Floer, U. Krupp, H.J. Christ, Mater. Sci. Eng. A278 (2000) 170–80.

    Article  Google Scholar 

  20. Q.Z. Chen, C.N. Jones, D.M. Knowles, Mater. Sci. Eng. A385 (2004) 402–18.

    Article  Google Scholar 

  21. T. Saegusa, J.R. Weertman, Scripta Metall. 12 (1978) 187–91.

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Prof. Z.G. Wang and Prof. S.X. Li for their good suggestions and advices. Thanks are also due to H.H. Su, W. Gao, B.M. Zhou, and X.Y. Li. This work is supported by the National Basic Research Program of China under Grant No. 2010CB631206 and the National Natural Science Foundation of China (NSFC) under Grant Nos. 51001104, 50931004, and U1037601.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Li.

Additional information

Manuscript submitted November 20, 2013.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, H., Li, P., Zhou, Y.Z. et al. Investigation on In Situ Tensile Behavior of Superalloy Bicrystals with Different GB Misorientations. Metall Mater Trans A 45, 3876–3881 (2014). https://doi.org/10.1007/s11661-014-2312-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-014-2312-3

Keywords

Navigation