Metallurgical and Materials Transactions A

, Volume 45, Issue 8, pp 3321–3337 | Cite as

Constitutive Behavior of Commercial Grade ZEK100 Magnesium Alloy Sheet over a Wide Range of Strain Rates

  • Srihari Kurukuri
  • Michael J. Worswick
  • Alexander Bardelcik
  • Raja K. Mishra
  • Jon T. Carter
Symposium: Processing-Microstructure-Property Relationships & Deformation Mechanisms of Magnesium Alloys

Abstract

The constitutive behavior of a rare-earth magnesium alloy ZEK100 rolled sheet is studied at room temperature over a wide range of strain rates. This alloy displays a weakened basal texture compared to conventional AZ31B sheet which leads to increased ductility; however, a strong orientation dependency persists. An interesting feature of the ZEK100 behavior is twinning at first yield under transverse direction (TD) tensile loading that is not seen in AZ31B. The subsequent work hardening behavior is shown to be stronger in the TD when compared to the rolling and 45 deg directions. One particularly striking feature of this alloy is a significant dependency of the strain rate sensitivity on orientation. The yield strength under compressive loading in all directions and under tensile loading in the TD direction is controlled by twinning and is rate insensitive. In contrast, the yield strength under rolling direction tensile loading is controlled by non-basal slip and is strongly rate sensitive. The cause of the in-plane anisotropy in terms of both strength and strain rate sensitivity is attributed to the initial crystallographic texture and operative deformation mechanisms as confirmed by measurements of deformed texture. Rate-sensitive constitutive fits are provided of the tensile stress–strain curves to the Zerilli–Armstrong[1] hcp material model and of the compressive response to a new constitutive equation due to Kurukuri et al.[2]

References

  1. 1.
    F.J. Zerilli and R.W. Armstrong: ASME, 1995, vol. 48, pp. 121-126.Google Scholar
  2. 2.
    S. Kurukuri, M.J. Worswick, D. Ghaffari Tari, J.T. Carter, and R.K. Mishra: Philos. Trans. R. Soc. A, 2014, vol. 372, p. 20130216.CrossRefGoogle Scholar
  3. 3.
    A. Luo: SAE Tech. Paper 2005, vol. 01, p. 0734.Google Scholar
  4. 4.
    J. Min, Y. Cao, J.T. Carter and R. Verma: Magnesium Technology 2012, Wiley, New York, NY.Google Scholar
  5. 5.
    S.R. Agnew and O. Duygulu: Int. J. Plast., 2005, vol. 21 (6), pp. 1161-1193.CrossRefGoogle Scholar
  6. 6.
    X.Y. Lou, M. Li, R.K. Boger, S.R. Agnew and R.H. Wagoner: Int. J. Plast., 2007, vol. 23 (1), pp. 44-86.CrossRefGoogle Scholar
  7. 7.
    S. Kurukuri, A.H. van den Boogaard, A. Miroux, and B. Holmedal: J. Mater. Process. Technol., 2009, vol. 209(15-16), pp. 5636–45.CrossRefGoogle Scholar
  8. 8.
    D. Ghaffari Tari and M.J. Worswick: AIP Conf. Proc., 2011, vol. 1353 (1), pp. 1547-1552.CrossRefGoogle Scholar
  9. 9.
    D. Ghaffari Tari, M.J. Worswick, and S. Winkler: J. Mater. Process. Technol., 2013, vol. 213(8), pp. 1337–47.CrossRefGoogle Scholar
  10. 10.
    M. Boba, M.J. Worswick, J.T. Carter, and R.K. Mishra: Int. Conf. on Magnesium Alloys and Their Applications, Vancouver, BC, Canada, 2012.Google Scholar
  11. 11.
    J. Bohlen, M.R. Nürnberg, J.W. Senn, D. Letzig and S.R. Agnew: Acta Mater., 2007, vol. 55 (6), pp. 2101-2112.CrossRefGoogle Scholar
  12. 12.
    J. Bohlen, S. Yi, D. Letzig and K.U. Kainer: Mater. Sci. Eng. A, 2010, vol. 527 (26), pp. 7092-7098.CrossRefGoogle Scholar
  13. 13.
    K. Hantzsche, J. Bohlen, J. Wendt, K.U. Kainer, S.B. Yi and D. Letzig: Scripta Mater., 2010, vol. 63 (7), pp. 725-730.CrossRefGoogle Scholar
  14. 14.
    L. Jiang, J.J. Jonas and R.K. Mishra: Mater. Sci. Eng. A, 2011, vol. 528 (21), pp. 6596-6605.CrossRefGoogle Scholar
  15. 15.
    C. Dreyer, W. Chiu, R. Wagoner and S. Agnew: J. Mater. Process. Technol., 2010, vol. 210 (1), pp. 37-47.CrossRefGoogle Scholar
  16. 16.
    T. Al-Samman and X. Li: Mater. Sci. Eng. A, 2011, vol. 528(10-11), pp. 3809–22.CrossRefGoogle Scholar
  17. 17.
    D. Hasenpouth, C. Salisbury, A. Bardelcik and M.J. Worswick: DYMAT, 2009, vol. 2, pp. 1431-1435.Google Scholar
  18. 18.
    D. Hasenpouth: Master’s Thesis, University of Waterloo, Waterloo, ON, Canada, 2010.Google Scholar
  19. 19.
    I. Ulacia, C.P. Salisbury, I. Hurtado and M.J. Worswick: J. Mater. Process. Technol., 2011, vol. 211 (5), pp. 830-839.CrossRefGoogle Scholar
  20. 20.
    J. Imbert and M. Worswick: J. Mater. Process. Technol., 2011, vol. 211 (5), pp. 896-908.CrossRefGoogle Scholar
  21. 21.
    J. Imbert and M. Worswick: Mater. Process. Technol., 2012, vol. 212 (9), pp. 1963-1972.CrossRefGoogle Scholar
  22. 22.
    I. Ulacia, I. Hurtado, J. Imbert, C.P. Salisbury, M.J. Worswick and A. Arroyo: Steel Research Int., 2009, vol. 80 (5), pp. 344-350.Google Scholar
  23. 23.
    T. Yokoyama: Strain, 2003, vol. 39 (4), pp. 167-175.CrossRefGoogle Scholar
  24. 24.
    T. Mukai, M. Yamanoi and K. Higashi: Mater. Sci. Forum, 2000, vol. 350-351, pp. 97-104.CrossRefGoogle Scholar
  25. 25.
    E. El-Magd and M. Abouridouane Journal de Physique, 2003, vol. 110, pp. 15-20.Google Scholar
  26. 26.
    R. Smerd, S. Winkler, C. Salisbury, M. Worswick, D. Lloyd and M. Finn: Int. J. Impact Eng., 2005, vol. 32 (1–4), pp. 541-560.CrossRefGoogle Scholar
  27. 27.
    A.C. Thompson, C.P. Salisbury, M.J. Worswick and R. Mayer: J. de Physique, 2006, vol. 134, pp. 281-286.Google Scholar
  28. 28.
    S. Kurukuri, D. Ghaffari Tari, M.J. Worswick, J.T. Carter, and R.K. Mishra: Int. Conf. on Magnesium Alloys and Their Applications, Vancouver, BC, Canada, 2012.Google Scholar
  29. 29.
    D. Ghaffari Tari, M.J. Worswick, U. Ali, and M. Gharghouri: Unpublished research, 2013.Google Scholar
  30. 30.
    A. Bardelcik, M. Worswick, S. Winkler and M. Wells: Int. J. Impact Eng., 2012, vol. 50, pp. 49-62.CrossRefGoogle Scholar
  31. 31.
    C.P. Salisbury: Master’s Thesis, University of Waterloo, Waterloo, ON, Canada, 2001.Google Scholar
  32. 32.
    A. Bardelcik, C.P. Salisbury, S. Winkler, M. Wells, M.J. Worswick: Int. J. Impact Eng., 2010, vol. 37 (6), pp. 694-702.CrossRefGoogle Scholar
  33. 33.
    C. Mason and M.J. Worswick: Int. J. Fract., 2001, vol. 111, pp. 29-51.CrossRefGoogle Scholar
  34. 34.
    A. Bardelcik: Private communication, 2013, University of Waterloo, Waterloo, Canada.Google Scholar
  35. 35.
    I. Ulacia, N. Dudamell, F. Gálvez, S. Yi, M. Pérez-Prado and I. Hurtado: Acta Mater., 2010, vol. 58 (8), pp. 2988-2998.CrossRefGoogle Scholar
  36. 36.
    M.R. Barnett: Metall. Mater. Trans. A, 2003, vol. 34A, pp. 1799-1806.CrossRefGoogle Scholar
  37. 37.
    Y. Chino, M. Kado and M. Mabuchi, Mater. Sci. Eng. A, 2008, vol. 494 (1-2), pp. 343-349.CrossRefGoogle Scholar
  38. 38.
    S. Yi, J. Bohlen, F. Heinemann and D. Letzig: Acta Mater., 2010, vol. 58 (2), pp. 592-605.CrossRefGoogle Scholar
  39. 39.
    A.S. Khan, A. Pandey, T. Gnäupel-Herold, R.K. Mishra: Int. J. Plast. 2011, vol. 27 (5), pp. 688-706.CrossRefGoogle Scholar
  40. 40.
    R.W. Armstrong and S.M. Walley: Int. Mater. Rev., 2008, vol. 53 (3), pp. 105-128.CrossRefGoogle Scholar
  41. 41.
    F.J. Zerilli and R.W. Armstrong: J. Appl. Phys., 1987, vol. 61 (5), pp. 1816-1825.CrossRefGoogle Scholar
  42. 42.
    F.J. Zerilli and R.W. Armstrong: Acta Metall. Mater., 1992, vol. 40 (8), pp. 1803-08.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2014

Authors and Affiliations

  • Srihari Kurukuri
    • 1
  • Michael J. Worswick
    • 1
  • Alexander Bardelcik
    • 1
  • Raja K. Mishra
    • 2
  • Jon T. Carter
    • 2
  1. 1.Department of Mechanical and Mechatronics EngineeringUniversity of WaterlooWaterlooCanada
  2. 2.Chemical and Materials Systems LaboratoryGeneral Motors R & DWarrenUSA

Personalised recommendations