Powder-Route Synthesis and Mechanical Testing of Ultrafine Grain Tungsten Alloys

Abstract

We report a W-rich alloy (W-7Cr-9Fe, at. pct) produced by high-energy ball milling, with alloying additions that both lower the densification temperature and retard grain growth. The alloy’s consolidation behavior and the resultant compacts’ microstructure and mechanical properties are explored. Under one condition, a 98 pct dense compact with a mean grain size of 130 nm was achieved, and exhibited a hardness of 13.5 GPa, a dynamic uniaxial yield strength of 4.14 GPa in Kolsky bar experiments, and signs of structural shear localization during deformation.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  1. 1.

    B.E. Schuster, J.P. Ligda, Z.L. Pan, and Q. Wei: JOM, 2011, vol. 63, pp. 27–31.

    Article  Google Scholar 

  2. 2.

    Q. Wei, K.T. Ramesh, B.E. Schuster, L.J. Kecskes, and R.J. Dowding: JOM, 2006, vol. 58, pp. 40–44.

    Article  Google Scholar 

  3. 3.

    D.B. Snow: Metall. Trans. A, 1976, vol. 7, pp. 783–94.

    Article  Google Scholar 

  4. 4.

    D.B. Snow: Metall. Trans. A, 1979, vol. 10, pp. 815–21.

    Article  Google Scholar 

  5. 5.

    E.S. Meieran and D.A. Thomas: Trans Met Soc AIME, 1965, vol. 233, pp. 937–43.

    Google Scholar 

  6. 6.

    L.J. Kecskes, K.C. Cho, R.J. Dowding, B.E. Schuster, R.Z. Valiev, and Q. Wei: Mater. Sci. Eng. A, 2007, vol. 467, pp. 33–43.

    Article  Google Scholar 

  7. 7.

    Q. Wei, H.T. Zhang, B.E. Schuster, K.T. Ramesh, R.Z. Valiev, L.J. Kecskes, R.J. Dowding, L.S. Magness Jr., and K. Cho: Acta Mater., 2006, vol. 54, pp. 4079–89.

    Article  Google Scholar 

  8. 8.

    A.P. Zhilyaev and T.G. Langdon: Prog. Mater. Sci., 2008, vol. 53, pp. 893–979.

    Article  Google Scholar 

  9. 9.

    L.S. Magness Jr.: Mech. Mater., 1994, vol. 17, pp. 147–54.

    Article  Google Scholar 

  10. 10.

    Q. Wei, L.J. Kecskes, and K.T. Ramesh: Mater. Sci. Eng. A, 2013, vol. 578, pp. 394–401.

    Article  Google Scholar 

  11. 11.

    Q. Wei, T. Jiao, K.T. Ramesh, E. Ma, L.J. Kecskes, L.S. Magness, R.J. Dowding, V.U. Kazykhanov, and R.Z. Valiev: Acta Mater., 2006, vol. 54, pp. 77–87.

    Google Scholar 

  12. 12.

    A.K. Srivastav and B.S. Murty: J. Alloys Compd., 2012, vol. 536, Supplement 1, pp. S41–S44.

    Article  Google Scholar 

  13. 13.

    E. Oda, K. Ameyama, and S. Yamaguchi: Mater. Sci. Forum, 2006, vol. 503-504, pp. 573–78.

    Article  Google Scholar 

  14. 14.

    H. Wang, Z.Z. Fang, K.S. Hwang, H. Zhang, and D. Siddle: Int. J. Refract. Met. Hard Mater., 2010, vol. 28, pp. 312–16.

    Article  Google Scholar 

  15. 15.

    R. Sarkar, P. Ghosal, M. Premkumar, A.K. Singh, K. Muraleedharan, A. Chakraborti, T.P. Bagchi, and B. Sarma: Powder Metall., 2008, vol. 51, pp. 166–70.

    Article  Google Scholar 

  16. 16.

    T.S. Srivatsan, K. Manigandan, M. Petraroli, R.M. Trejo, and T.S. Sudarshan: Adv. Powder Technol., 2013, vol. 24, pp. 190–99.

    Article  Google Scholar 

  17. 17.

    B.R. Klotz, F.R. Kellogg, E.M. Klier, R.J. Dowding, and K.C. Cho: Characterization, Processing, and Consolidation of Nanoscale Tungsten Powder, Army Research Laboratory, 2009.

  18. 18.

    K.C. Cho, R.H. Woodman, B.R. Klotz, and R.J. Dowding: Mater. Manuf. Process., 2004, vol. 19, pp. 619–30.

    Article  Google Scholar 

  19. 19.

    O. El-Atwani, D.V. Quach, M. Efe, P.R. Cantwell, B. Heim, B. Schultz, E.A. Stach, J.R. Groza, and J.P. Allain: Mater. Sci. Eng. A, 2011, vol. 528, pp. 5670–77.

    Article  Google Scholar 

  20. 20.

    U.K. Vashi, R.W. Armstrong, and G.E. Zima: Metall. Trans., 1970, vol. 1, pp. 1769–71.

    Article  Google Scholar 

  21. 21.

    C. Agte and J. Vacek: Tungsten and Molybdenum, NASA Trans., 1963.

  22. 22.

    H.H. Tian and M. Atzmon: Philos. Mag. A, 1999, vol. 79, pp. 1769–86.

    Article  Google Scholar 

  23. 23.

    ASTM Standard E562-11: Test Method for Determining Volume Fraction by Systematic Manual Point Count, vol. 03.01, Annual Book of ASTM Standards, ASTM International, Materials Park, OH, 2011.

  24. 24.

    ASTM Standard E1245-03: Practice for Determining the Inclusion or Second-Phase Constituent Content of Metals by Automatic Image Analysis, vol. 03.01, Annual Book of ASTM Standards, ASTM International, Materials Park, OH, 2008.

  25. 25.

    ASTM Standard E112-12: Test Methods for Determining Average Grain Size, vol. 03.01, Annual Book of ASTM Standards, ASTM International, Materials Park, OH, 2012.

  26. 26.

    W.C. Oliver and G.M. Pharr: J. Mater. Res., 2004, vol. 19, pp. 3–20.

    Article  Google Scholar 

  27. 27.

    ASM Handbook: Properties and Selection: Nonferrous Alloys and Special Purpose Materials, Vol. 2, ASM International, Metals Park, OH, 1990.

    Google Scholar 

  28. 28.

    M.D. Uchic, D.M. Dimiduk, J.N. Florando, and W.D. Nix: Science, 2004, vol. 305, pp. 986–89.

    Article  Google Scholar 

  29. 29.

    W.W. Chen and B. Song: Split Hopkinson (Kolsky) Bar Design, Testing and Applications, Springer, New York, NY, 2011.

    Google Scholar 

  30. 30.

    T.H. Courtney and Z. Wang: Scr. Metall. Mater., 1992, vol. 27, pp. 777–82.

    Article  Google Scholar 

  31. 31.

    P. Gustafson: Metall. Trans. A, 1988, vol. 19, pp. 2531–46.

    Article  Google Scholar 

  32. 32.

    S. Telu, A. Patra, M. Sankaranarayana, R. Mitra, and S.K. Pabi: Int. J. Refract. Met. Hard Mater., 2013, vol. 36, pp. 191–203.

    Article  Google Scholar 

  33. 33.

    M.S. El-Eskandarany, K. Sumiyama, and K. Suzuki: Acta Mater., 1997, vol. 45, pp. 1175–87.

    Article  Google Scholar 

  34. 34.

    C.N.J. Wagner, E. Yang, and M.S. Boldrick: Nanostructured Mater., 1996, vol. 7, pp. 1–11.

    Article  Google Scholar 

  35. 35.

    H.J. Fecht, E. Hellstern, Z. Fu, and W.L. Johnson: Metall. Trans. A, 1990, vol. 21, pp. 2333–37.

    Article  Google Scholar 

  36. 36.

    R. Malewar, K.S. Kumar, B.S. Murty, B. Sarma, and S.K. Pabi: J. Mater. Res., 2007, vol. 22, pp. 1200–06.

    Article  Google Scholar 

  37. 37.

    A.O. Aning, Z. Wang, and T.H. Courtney: Acta Metall. Mater., 1993, vol. 41, pp. 165–74.

    Article  Google Scholar 

  38. 38.

    D. Oleszak and P.H. Shingu: J. Appl. Phys., 1996, vol. 79, pp. 2975–80.

    Article  Google Scholar 

  39. 39.

    D.P. Xiang, L. Ding, Y.Y. Li, J.B. Li, X.Q. Li, and C. Li: Mater. Sci. Eng. A, 2012, vol. 551, pp. 95–99.

    Article  Google Scholar 

  40. 40.

    U. Herr and K. Samwer: Nanostructured Mater., 1992, vol. 1, pp. 515–21.

    Article  Google Scholar 

  41. 41.

    J.O. Andersson, T. Helander, L. Höglund, P. Shi, and B. Sundman: CALPHAD, 2002, vol. 26, pp. 273–312.

    Article  Google Scholar 

  42. 42.

    T. Chookajorn, H.A. Murdoch, and C.A. Schuh: Science, 2012, vol. 337, pp. 951–54.

    Article  Google Scholar 

  43. 43.

    D. Peckner: The Strengthening of Metals, Reinhold, New York, 1964, pp. 93–139.

    Google Scholar 

  44. 44.

    R.W. Hertzberg: Deformation and Fracture Mechanics of Engineering Materials, 3rd ed., Wiley, New York, NY, 1996, pp. 8.

    Google Scholar 

  45. 45.

    C.S. Barrett and T.B. Massalski: Structure of Metals, 3rd ed., McGraw-Hill, New York, NY, 1966, pp. 626–31.

    Google Scholar 

  46. 46.

    T.J. Rupert, J.C. Trenkle, and C.A. Schuh: Acta Mater., 2011, vol. 59, pp. 1619–31.

    Article  Google Scholar 

  47. 47.

    H.C. Lee and J. Gurland: Mater. Sci. Eng., 1978, vol. 33, pp. 125–33.

    Article  Google Scholar 

  48. 48.

    E. Underwood: Quantitative Stereology, Addison-Wesley Publishing Co., Reading, MA, 1970, pp. 99-103.

    Google Scholar 

  49. 49.

    Z. Fan, A. P. Miodownik, and P. Tsakiropoulos: Mater. Sci. Technol., 1993, vol. 9, pp. 1094–1100.

    Article  Google Scholar 

  50. 50.

    H. Zhang, B.E. Schuster, Q. Wei, and K.T. Ramesh: Scr. Mater., 2006, vol. 54, pp. 181–86.

    Article  Google Scholar 

  51. 51.

    B. Butler, E. Klier, D. Casem, A. Dwivedi, M. Gallagher, and J. Hays: Demonstration of Shear Localization in Ultrafine Grained Tungsten Alloys via Powder Metallurgy Processing Route, Army Research Laboratory, 2012.

  52. 52.

    A.M. Lennon and K.T. Ramesh: Mater. Sci. Eng. A, 2000, vol. 276, pp. 9–21.

    Article  Google Scholar 

  53. 53.

    Q. Wei, K.T. Ramesh, E. Ma, L.J. Kesckes, R.J. Dowding, V.U. Kazykhanov, and R.Z. Valiev: Appl. Phys. Lett., 2005, vol. 86, pp. 101907–101909.

    Article  Google Scholar 

  54. 54.

    D. Jia, K.T. Ramesh, and E. Ma: Acta Mater., 2003, vol. 51, pp. 3495–3509.

    Article  Google Scholar 

  55. 55.

    J.P. Ligda, B.E. Schuster, and Q. Wei: Scr. Mater., 2012, vol. 67, pp. 253–56.

    Article  Google Scholar 

  56. 56.

    J.E. Carsley, A. Fisher, W.W. Milligan, and E.C. Aifantis: Metall. Mater. Trans. A, 1998, vol. 29, pp. 2261–71.

    Article  Google Scholar 

  57. 57.

    S.P. Joshi and K.T. Ramesh: Acta Mater., 2008, vol. 56, pp. 282–91.

    Article  Google Scholar 

  58. 58.

    S.P. Joshi and K.T. Ramesh: Mater. Sci. Eng. A, 2008, vol. 493, pp. 65–70.

    Article  Google Scholar 

Download references

Acknowledgments

This study was supported by the US Defense Threat Reduction Agency under Grant No. HDTRA1-11-1-0062. ZCC acknowledges support from the Department of Defense through the NDSEG fellowship program. ELH acknowledges support from the US Army Research Laboratory through the Oak Ridge Institute for Space and Education (ORISE) Program # 1120-1120-99. BES would like to acknowledge support work from the Cooperative Research and Development Agreement #11-24. We would like to thank Ms. Alexandria Will-Cole for her indentation work on the intermetallic phase, Dr. Kisub Cho for performing the THERMOCALC calculations, and Dr. Daniel T. Casem for his assistance with the Kolsky bar tests.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Christopher A. Schuh.

Additional information

Manuscript submitted November 6, 2013.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Cordero, Z.C., Huskins, E.L., Park, M. et al. Powder-Route Synthesis and Mechanical Testing of Ultrafine Grain Tungsten Alloys. Metall Mater Trans A 45, 3609–3618 (2014). https://doi.org/10.1007/s11661-014-2286-1

Download citation

Keywords

  • Shear Localization
  • High Relative Density
  • Electro Discharge Machine
  • Thermal Excursion
  • High Strain Rate Test