Skip to main content
Log in

The Diffusion Coefficient of Scandium in Dilute Aluminum-Scandium Alloys

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The diffusion coefficient of Sc in dilute Al-Sc alloys has been determined at 748 K, 823 K, and 898 K (475 °C, 550 °C, and 625 °C, respectively) using semi-infinite diffusion couples. Good agreement was found between the results of the present study and both the higher temperature, direct measurements and lower temperature, indirect measurements of these coefficients reported previously in the literature. The temperature-dependent diffusion coefficient equation derived from the data obtained in the present investigation was found to be \( D \left( {{\text{m}}^{2} /{\text{s}}} \right) = \left( {2.34 \pm 2.16} \right) \times 10^{ - 4} \left( {{\text{m}}^{2} /{\text{s}}} \right) { \exp }\left( {\frac{{ - \left( {167 \pm 6} \right) \left( {{\text{kJ}}/{\text{mol}}} \right)}}{RT}} \right). \) Combining these results with data from the literature and fitting all data simultaneously to an Arrhenius relationship yielded the expression \( D \left( {{\text{m}}^{2} /{\text{s}}} \right) = \left( {2.65 \pm 0.84} \right) \times 10^{ - 4} \left( {{\text{m}}^{2} /{\text{s}}} \right) { \exp }\left( {\frac{{ - \left( {168 \pm 2} \right) \left( {{\text{kJ}}/{\text{mol}}} \right)}}{RT}} \right). \) In each equation given above, R is 0.0083144 kJ/mol K, T is in Kelvin, and the uncertainties are ±1 standard error.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. L.K. Lamikhov and G.V. Samsonov: Tsvetn. Metall., 1964, vol. 8, pp. 79–82.

    Google Scholar 

  2. L.A. Willey: U.S. Patent 3,169,181, November 9, 1971.

  3. L.S. Toropova, D.G. Eskin, M.L. Kharakterova, and T.V. Dobatkina: Advanced Aluminum Alloys Containing Scandium-Structure and Properties, Taylor and Francis, Abingdon, 1998.

    Google Scholar 

  4. J. Royset and N. Ryum: Int. Mater. Rev., 2005, vol. 50, pp. 19–44.

    Article  Google Scholar 

  5. K.E. Knipling: Z. Metallkunde, 2006, vol. 97, pp. 246–65.

    Article  Google Scholar 

  6. V.I. Yelagin, V.V. Sakarov, S.G. Pavlenko, and T.D. Rostova: Phys. Met. Metall., 1985, vol. 60, pp. 88–92.

    Google Scholar 

  7. Y.W. Riddle and T.H. Sanders Jr.: Metall. Mater. Trans. A, 2004, vol. 35, pp. 341–50.

    Article  Google Scholar 

  8. M.E. van Dalen, D.C. Dunand, and D.N. Seidman: Acta Mater., 2005, vol. 53, pp. 4225–35.

    Article  Google Scholar 

  9. H. Hallem, W. Lefebvre, B. Forbord, F. Danoix, and K. Marthinsen: Mater. Sci. Eng. A, 2006, vol. 421, pp. 154–60.

    Article  Google Scholar 

  10. R.A. Karnesky, D.C. Dunand, and D.N. Seidman: Acta Mater., 2009, vol. 57, pp. 4022–231.

    Article  Google Scholar 

  11. M.E. van Dalen, R.A. Karnesky, J.R. Cabotaje, D.C. Dunand, and D.N. Seidman: Acta Mater., 2009, vol. 57, pp. 4081–89.

    Article  Google Scholar 

  12. Y. Harada and D.C. Dunand: Mater. Sci. Eng. A, 2002, vols. 329–331, pp. 686–95.

    Article  Google Scholar 

  13. Y. Harada and D.C. Dunand: Intermetallics, 2009, vol. 17, pp. 17–24.

    Article  Google Scholar 

  14. S.-I. Fujikawa: Defect Diffus. Forum, 1997, vols. 143–147, pp. 115–20.

    Article  Google Scholar 

  15. E.A. Marquis and D.N. Seidman: Acta Mater., 2001, vol. 49, pp. 1909–919.

    Article  Google Scholar 

  16. C. Watanabe, T. Kondo, and R. Monzen: Metall. Mater. Trans. A, 2004, vol. 35, pp. 3003–008.

    Article  Google Scholar 

  17. C. Wagner: Z. Elektrochem., 1961, vol. 65, pp. 581–91.

    Google Scholar 

  18. I.M. Lifshitz and V.V. Slyozov: Phys. Chem. Solids, 1961, vol. 19, pp. 35–50.

    Article  Google Scholar 

  19. H.A. Calderon, P.W. Vorhees, J.L. Murray, and G. Kostorz: Acta Metall. Mater., 1994, vol. 42, pp. 991–1000.

    Article  Google Scholar 

  20. S. Kim and Y.A. Chang: Metall. Mater. Trans. A, 2000, vol. 31, pp. 1519–24.

    Article  Google Scholar 

  21. L.S. Darken and R.W. Gurry: Physical Chemistry of Metals, McGraw-Hill Book Co., New York, NY, 1953, pp. 437–64.

    Google Scholar 

  22. P. Shewmon: Diffusion in Solids, 2nd ed., The Minerals, Metals and Materials Society, Warrendale, PA, 1989, pp.131–48.

    Google Scholar 

  23. J. Philibert: Atom Movements: Diffusion and Mass Transport in Solids (Translated by S. J. Rothman), Les Editions de Physique, Les Ulis, France, 1991, pp. 203–47.

Download references

Acknowledgments

The authors are grateful to the Office of Naval Research for funding this work through ONR Grant Number N00014-11-10876, Dr. William Mullins, Program Manager. They also wish to thank Michigan Tech technical staff members: Paul Fraley for assistance in sample encapsulation and heat treating, Ruth Kramer for help and advice related to metallographic sample preparation, and Owen Mills for his knowledge of electron microscopy and EPMA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Douglas Swenson.

Additional information

Manuscript submitted July 26, 2013.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kerkove, M.A., Wood, T.D., Sanders, P.G. et al. The Diffusion Coefficient of Scandium in Dilute Aluminum-Scandium Alloys. Metall Mater Trans A 45, 3800–3805 (2014). https://doi.org/10.1007/s11661-014-2275-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-014-2275-4

Keywords

Navigation