Skip to main content
Log in

Thermodynamics of α′(Fe-Rich bcc) + α″(Cr-Rich bcc) → α(bcc) and α para → α ferro Transformations in Fe-20 wt pct Cr Alloy: Drop Calorimetry Study and Elucidation of Magnetic Contribution to Phase Stability

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

There is considerable uncertainty among diverse assessments of phase equilibrium in Fe-Cr alloys, especially around (α′ + α″)/α miscibility gap region. This is largely due to the difficulty associated with the rigorous incorporation of the interplay between magnetic and chemical contribution to phase stability, in particular its composition and temperature dependencies through theory, in the absence of reliable experimental data. Toward this cause, accurate enthalpy measurements have been made on homogenized Fe-20 wt pct Cr alloy using inverse drop calorimetry, in the temperature range 298 K to 1473 K (25 °C to 1200 °C). The experiments revealed two distinct phase transformations: (i) at 720 ± 10 K (447 ± 10 °C), the Fe-20Cr alloy transformed from α′(Fe-rich) + α″(Cr-rich) two-phase microstructure to α single phase and (ii) at 925 ± 10 K (652 ± 10 °C), the ferromagnetic single-phase α transformed to paramagnetic state. Both these transformations are clearly attested by the measured enthalpy increment variation with temperature. The enthalpy data obtained in this study have been combined with available literature information to forge an integrated theoretical assessment of the energetic aspects of α′ + α″  α, and α ferro → α para transformations. In addition, a comprehensive evaluation of enthalpy and heat capacity data for Fe-20Cr alloy in the temperature range 0 K to 1473 K (−273 °C to 1200 °C), with explicit incorporation of magnetic contribution has also been made.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. K. H. Lo, C. H. Shek and J. K. L. Lai, Mater. Sci. Eng. R, 2009, vol. 65, pp. 39-104.

    Article  Google Scholar 

  2. F. B. Pickering, Physical Metallurgy and the Design of Steels, Applied Science Publishers, London, 1978.

    Google Scholar 

  3. W. A. Dench, Trans. Faraday Soc., 1963, vol. 59, pp. 1279-91.

    Article  Google Scholar 

  4. G.R. Belton and R.J. Fruehan, Trans. Metall. Soc. AIME, 1970, vol. 1, pp. 781-90.

    Google Scholar 

  5. I. A. Pavars, B. A. Baum, P. V. Gel’d, High Temp., 1970, vol. 8, pp. 67–71.

    Google Scholar 

  6. G. Kirchner, T. Nishizawa, and B. Uhrenius, Metall. Trans., 1973, vol. 4A, pp. 167-74.

    Article  Google Scholar 

  7. E. N. Mazandarany and R. D. Phelke, Metall. Trans., 1973, vol. 4A, pp. 2067–76.

    Article  Google Scholar 

  8. J. Chipman, Metall Trans., 1974, vol. 5A, pp. 521–23.

    Article  Google Scholar 

  9. L. Kaufman, Metall. Trans., 1974, vol. 5A, pp.1688-89.

    Article  Google Scholar 

  10. M. V. Rao and W. A. Tiller, Mater. Sci. Eng., 1974, vol. 14, pp. 47-54.

    Article  Google Scholar 

  11. A. S. Normanton, R. H. Moore and B. B. Argent, Metal Sci., 1976, vol.10, pp. 207–13.

    Article  Google Scholar 

  12. D. B. Downie and J. F. Martin, J. Chem. Thermodyn., 1984, vol.16, pp. 743-52.

    Article  Google Scholar 

  13. Y.Y. Chuang, J.C. Lin, and Y.A. Chang, Calphad, 1987, vol. 11, pp. 57-65.

    Article  Google Scholar 

  14. J. Andersson and B. Sundman, Calphad, 1987, vol. 11, pp. 83–92.

    Article  Google Scholar 

  15. A. I. Zaitsev, M.A. Zemchenko, and B.M. Mogutnov, Russ. J. Phys. Chem., 1990, vol. 64, pp. 634-39.

    Google Scholar 

  16. A.I. Zaitsev,M.A. Zemchenko, and B.M. Mogutnov, Russ. J. Phys. Chem., 1990, vol. 64, pp. 639-43.

    Google Scholar 

  17. B.-J. Lee, Calphad, 1993, vol. 17, pp. 251–68.

    Article  Google Scholar 

  18. J. Vřešt’ál, J. Houserová and M. Šob, J. Min. Metall., 2002, vol. 38, pp. 205–11.

    Article  Google Scholar 

  19. G. Bonny, D. Terentyev and L. Malerba, J. Phase Equilib., 2010, vol. 31, pp. 439–44.

    Article  Google Scholar 

  20. W. Xiong, P. Hedstrom, M. Selleby, J. Odqvist, M. Thuvander and Q. Chen, Calphad, 2011, vol. 35, pp. 355–66.

    Article  Google Scholar 

  21. H. Kuwano, Trans. Jpn. Inst. Met., 1985, vol. 26, pp. 473–81.

    Article  Google Scholar 

  22. M. K. Miller, J. Phys. Colloq., 1989, vol. 50 (C8), pp. 247–52.

    Google Scholar 

  23. M. K. Miller, J. M. Hyde, M. G. Hetherington, A. Cerezo, G. D. W. Smith, and C. M. Elliott, Acta Metall. Mater., 1995, vol. 43, pp. 3385-3401.

    Article  Google Scholar 

  24. R.O. Williams and H.W. Paxton, J. Iron Steel Inst., 1957, vol. 185, pp. 358-74.

    Google Scholar 

  25. G. Pomey and P. Bastien, Rev. Metall., 1956, vol. 53, pp. 147-55.

    Google Scholar 

  26. Yu. I. Ustinovshikov and B. E. Pushkarev, Mat. Sci. Eng. A, 1998, vol. 241, pp. 159-68.

    Article  Google Scholar 

  27. Y. I. Ustinovshikov and B. E. Pushkarev, J. Alloys Compd., 2005, vol. 389, pp. 95-101.

    Article  Google Scholar 

  28. S. M. Dubiel and G. Inden, Z. Meallkd., 1987, vol. 78, pp. 544–49.

    Google Scholar 

  29. G. R. Speich, A. J. Schwoeble, and W. C. Leslie, Metall. Trans., 1972, vol. 3A, pp. 2031-36.

    Article  Google Scholar 

  30. K. Abiko and Y. Kato, Phys. Stat. Solidi (a) 1998, vol. 167, pp. 449-61.

    Article  Google Scholar 

  31. A. Hishinuma, S. Takaki and K. Abiko, Phys. Stat. Solidi (a), 2002, vol. 189, pp. 69-78.

    Article  Google Scholar 

  32. K. Schroder, Phys. Rev., 1962, vol. 125, pp. 1209–12.

    Article  Google Scholar 

  33. S. S. Shiniozaki and A. Arrot, Phys. Rev., 1966, vol. 152, pp. 611-22.

    Article  Google Scholar 

  34. A.T. Aldred, Phys. Rev. B, 1976, vol. 14, pp. 219-27.

    Article  Google Scholar 

  35. A.T. Aldred, B. D. Rainford, J. S. Kouvel, and T. J. Hicks, Phys. Rev. B, 1976, vol. 14, pp. 228-35.

    Article  Google Scholar 

  36. B. Fultz, L. Anthony, J. L. Robertson, R. M. Nicklow, S. Spooner, and M. Mostoller, Phys. Rev. B, 1995, vol. 52, pp. 3280-85.

    Article  Google Scholar 

  37. M. S. Lucas, M. Kresch, R. Stevens, and B. Fultz, Phys. Rev. B, 2008, vol. 77, pp. 184303 (1–5).

    Article  Google Scholar 

  38. J. Cieslak, M. Reissner, W. Steiner and S. M. Dubiel, Phys. Stat. Solidi (a), 2008, vol. 205, pp. 1794-99.

    Article  Google Scholar 

  39. SM Dubiel, J Cieslak, and BFO Costa, J. Phys. Condens. Matter, 2010, vol. 22, pp. 055402 (1–6).

    Article  Google Scholar 

  40. M. Hennion, J. Phys. F Met. Phys., 1983, vol. 13, pp. 2351-58.

    Article  Google Scholar 

  41. P. Olsson, I. A. Abrikosov, L. Vitos and J. Wallenius, J. Nucl. Mater., 2003, vol. 321, pp. 84–90.

    Article  Google Scholar 

  42. J. Wallenius, P. Olsson, C. Lagerstedt, N. Sandberg, R. Chakarova and V. Pontikis, Phys. Rev. B, 2004, vol. 69, pp. 094103 (1–9).

    Article  Google Scholar 

  43. A. Caro, D. A. Crowson and M. Caro, Phys. Rev. Lett., 2005, vol. 95, pp. 075702 (1–4).

    Article  Google Scholar 

  44. J. H. Shim, B. J. Lee and B. D. Wirth, J. Nucl. Mater., 2006, vol. 351, pp. 56–64.

    Article  Google Scholar 

  45. P. Olsson, A. Abrikosov and J. Wallenius, Phys. Rev. B, 2006, vol. 73, pp. 104416 (1–8).

    Article  Google Scholar 

  46. T. Klaver, R. Drautz and M. Finnis, Phys. Rev. B, 2006, vol. 74, pp. 094435 (1–11).

    Article  Google Scholar 

  47. A. A. Mirzoev, M. M. Yalalov and D. A. Mirzaev, Phys. Met. Metall., 2007, vol. 103, pp. 86-90.

    Article  Google Scholar 

  48. M. Y. Lavrentiev, R. Drautz, D. N. Manh, T. P. C. Klaver and L. Dudarev, Phys. Rev. B, 2007, vol. 75, pp. 014208 (1–12).

    Article  Google Scholar 

  49. A. Froideval, R. Iglesias, M. Samaras, S. Schuppler, P. Nagel, D. Grolimund, M. Victoria and W. Hoffelner, Phys. Rev. Lett., 2007, vol. 99, pp. 237201 (1–4).

    Article  Google Scholar 

  50. D. N. Manh, M. Y. Lavrentiev and S. L. Dudarev, C. R. Phys., 2008, vol. 9, pp. 379–88.

    Article  Google Scholar 

  51. P. A. Korzhavyi, A. V. Ruban, J. Odqvist and J. O. Nilsson and B. Johansson, Phys. Rev. B, 2009, vol. 79, pp. 054202 (1–16).

    Article  Google Scholar 

  52. H. Zhang, B. Johansson and L. Vitos, Phys. Rev. B, 2009, vol. 79, pp. 224201 (1–10).

    Article  Google Scholar 

  53. M. Y. Lavrentiev, D. N. Manh and S. L. Dudarev, Comput. Mater. Sci., 2010, vol. 49, pp. 5199–5203.

    Article  Google Scholar 

  54. VI Razumovskiy, AV Ruban and PA Korzhavyi, Phys. Rev. B, 2011, vol. 84, pp. 024106 (1–8).

    Article  Google Scholar 

  55. A. V. Ruban, V. I. Razumovskiy, Phys. Rev. B, 2012, vol. 86, pp. 174111 (1–15).

    Article  Google Scholar 

  56. M. Y. Lavrentiev, H. Mergia, J. Phys. Condens. Mater., 2012, vol. 24, pp. 326001 (1–5).

    Article  Google Scholar 

  57. H. Zhang, G.Wang, M. Punkkinen, S. Hertzman, B. Johansson and L. Vitos, J. Phys.: Condens.Matter, 2013, vol. 25, pp. 195501 (1–6).

    Article  Google Scholar 

  58. A. Alam, R. K. Chouhan and A. Mookerjee, Phys. Rev. B, 2011, vol. 83, pp. 054201 (1–12).

    Article  Google Scholar 

  59. R.L. Klueh and A.T. Nelson, J. Nucl. Mater., 2007, vol. 371, pp. 37–52.

    Article  Google Scholar 

  60. G. Bonny, R.C. Pasianot, L. Malerba, A. Caro, P. Olsson, and M. Yu. Lavrentiev, J. Nucl. Mater., 2009, vol. 385, pp. 268-77.

    Article  Google Scholar 

  61. B. H. Sencer and F. A. Garner, J. Nucl. Mater., 2000, vol. 283–287, pp.164-68.

    Article  Google Scholar 

  62. T. Okita, N. Sekimura and F.A. Garner, J. Nucl. Mater., 2011, vol. 417, pp.944-48.

    Article  Google Scholar 

  63. D. Terentyev and L. Malerba, J. Nucl. Mater., 2004, vol. 329-333, pp. 1161-65.

    Article  Google Scholar 

  64. C. Capdevila, M. K. Miller, K. F. Russell, J. Chao and J. L. Gonzalez-Carrasco, Mater. Sci. Eng. A, 2008, vol. 490, pp. 277-88.

    Article  Google Scholar 

  65. C. Capdevila, M. K. Miller and J. Chao, Acta Mater., 2012, vol. 60, pp. 4673-84.

    Article  Google Scholar 

  66. Orlando Soriano-vargas, EO. Avila-Davila, V.M. Lopez-Hirata, HJ Dorantes-Rosales, JL Gonzalez-Velazquez (2009) Mater. Trans. 50:1753-57.

    Article  Google Scholar 

  67. Z. Szaraz, Gy. Torok, V. Krsjak and P. Hahner, J. Nucl. Mater., 2013, vol. 435, pp. 56-62.

    Article  Google Scholar 

  68. W. Xiong, M. Selleby, Q. Chen, J. Odqvist and Y. Du, Solid State Mater. Sci., 2010, vol. 35, pp. 125-52.

    Article  Google Scholar 

  69. G. Bonny, D. Terentyev, and L. Malerba, Scripta Mater., 2008, vol. 59, pp. 1193-96.

    Article  Google Scholar 

  70. F. Bergner, A. Ulbricht, and C. Heintze, Scripta Mater., 2009, vol. 61, pp. 1060-1163.

    Article  Google Scholar 

  71. G. Bonny, P. Erhart, A. Caro, R.C. Pasianot, L. Malerba, and M. Caro, Model. Simul. Mater. Sci., Eng., 2009, vol. 17, p 025006.

    Article  Google Scholar 

  72. F. Bley, Acta Metall. Mater., 1992, vol. 40, pp. 1505-17.

    Article  Google Scholar 

  73. L. Malerba, SCK-CEN Internal Report, No. ER-16, 2006, pp. 1–22.

  74. T. Nishizawa, J. Phase Equilib., 1995, Vol. 16, pp. 379-84.

    Article  Google Scholar 

  75. G. Inden, Phys. B, 1981, vol. 103, pp. 82–100.

    Article  Google Scholar 

  76. M. Hillert and M. Jarl, Calphad, 1978, vol. 2, pp. 227-38.

    Article  Google Scholar 

  77. N. Saunders and A. P. Miodownik, Calphad: A Comprehensive Guide, Pergamon, Oxford, 1988.

    Google Scholar 

  78. S. M. Dubiel, C. C. M. Campbell and Z. Obuszko, Solid State Commun., 1978, vol. 26, pp. 593-97.

    Article  Google Scholar 

  79. MD. Kuzmin, M. Richter and A. N. Yaresko, Phys. Rev. B, 2006, vol. 73, pp.100401 (1–4).

    Article  Google Scholar 

  80. P.J. Von Ranke, N.A. de Oliveira, C. Mello, A. Magnus, G. Carvalho and S. Gama, Phys. Rev. B, 2005, vol. 71, pp. 054410 (1–6).

    Article  Google Scholar 

  81. S. Raju, BJ Ganesh, AK Rai, S. Saroja, E. Mohandas, M. Vijayalakshmi and B Raj, Int. J. Thermophys., 2010, vol. 31, pp. 399-415.

    Article  Google Scholar 

  82. S. Raju, B.J Ganesh, AK Rai, R. Mythili, S. Saroja and B Raj, J. Nucl. Mater., 2010, vol. 405, pp. 59-69.

    Article  Google Scholar 

  83. K. Yamaguchi and K. Itagaki, J. Thermal Anal. Calorim., 2002, vol. 69, pp. 1059-66.

    Article  Google Scholar 

  84. D. C. Wallace, Thermodynamics of Crystals, Wiley, New York, 1972, pp. 1-512.

    Google Scholar 

  85. O. L. Anderson, Equations of State of Solids for Geophysics and Ceramic Science, Oxford University Press, New York, 1995, pp. 1-405.

    Google Scholar 

  86. Q. Chen and B. Sundman, J. Phase Equilib., 2001, vol. 22, pp. 631-44.

    Article  Google Scholar 

  87. A. T. Dinsdale, Calphad, 1991, vol. 15, pp.317-425.

    Article  Google Scholar 

  88. L. Jithender and N. Gopikrishna, Ind. J. Phys., 2013, vol. 87, pp. 537-42.

    Article  Google Scholar 

  89. V. L. Moruzzi, J. F. Janak and K. Schwarz, Phys. Rev. B, 1988, vol. 37, pp. 790-99.

    Article  Google Scholar 

  90. S. Linderoth and P. H. Larsen, MRS Proc., 1999, vol. 575, pp. 325-28.

    Article  Google Scholar 

  91. D. S. Sanditov, V. V. Mantatov, M. V. Darmaev and B. D. Sanditov, Tech. Phys., 2009, vol. 54, pp. 385-88.

    Article  Google Scholar 

  92. M. C. Cadeville and J. L. Moran Lopez, Phys. Rep., 1987, vol. 153, pp. 331-99.

    Article  Google Scholar 

Download references

Acknowledgments

The authors sincerely thank Mr. L. Meenakshi Sundaram for the help rendered in alloy preparation. Miss. N. Vijaya Shanthi’s help in performing calorimetry experiments is gratefully acknowledged. The continuous support and encouragement of Dr. P. R. Vasudeva Rao and Dr. T. Jayakumar are sincerely acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Subramanian Raju.

Additional information

Manuscript submitted July 4, 2013.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hajra, R.N., Raju, S., Rai, A.K. et al. Thermodynamics of α′(Fe-Rich bcc) + α″(Cr-Rich bcc) → α(bcc) and α para → α ferro Transformations in Fe-20 wt pct Cr Alloy: Drop Calorimetry Study and Elucidation of Magnetic Contribution to Phase Stability. Metall Mater Trans A 45, 3386–3400 (2014). https://doi.org/10.1007/s11661-014-2273-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-014-2273-6

Keywords

Navigation