Skip to main content
Log in

Predicting the Effect of Mo, Ni, and Si on the Bainitic Stasis

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The “transformation stasis” phenomenon during the isothermal bainitic ferrite formation in a series of Fe-C-X (X = Mo, Ni, Si ) alloys has been analyzed. Both the Gibbs energy balance (GEB) approach and the \(T_0\) model have been applied to model the “transformation stasis” phenomenon, and their predictions are compared with experimental results. The \(T_0\) model failed in predicting the transformation stasis (TS) phenomenon for the alloys investigated here, while the GEB predictions are in very good agreement with experimental data. It is found that Mo has a very strong effect on the TS phenomenon, while the effect of Si is found to be negligible. Ni has an intermediate effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. M. Hillert: “The Growth of Ferrite, Bainite and Martensite”, Internal Report, Royal Institute of Technology, 1960.

  2. H.K.D.H. Bhadeshia, D.V. Edmonds, Acta Metall. 28, 1265–1273 (1980).

    Article  Google Scholar 

  3. G. Purdy, M. Hillert, Acta Metall. 32, 823–828 (1984).

    Article  Google Scholar 

  4. H.K.D.H. Bhadeshia, Bainite in Steels (The Institute of Materials, London, 1992).

    Google Scholar 

  5. H.I. Aaronson, G.R. Purdy, D.V. Malakhov, W.T. Reynolds, Scripta Mater. 44, 2425–2430 (2001).

    Article  Google Scholar 

  6. D. Quidort, Y.J.M. Brechet, Acta Mater. 49, 4161–4170 (2001).

    Article  Google Scholar 

  7. D. Quidort, Y.J.M. Brechet, Scripta Mater. 47, 151–156 (2002).

    Article  Google Scholar 

  8. G.R. Purdy, Scripta Mater. 47, 181–185 (2002).

    Article  Google Scholar 

  9. M. Enomoto, Scripta Mater. 47, 145–149 (2002).

    Article  Google Scholar 

  10. M. Hillert, L. Hoglund, J. Agren, Metall. Mater. Trans. A 35A, 3693–700 (2004).

    Article  Google Scholar 

  11. Z.G. Yang, H.S. Fang, Curr. Opin. Solid State Mater. Sci. 9, 277–286 (2005).

    Article  Google Scholar 

  12. H.I. Aaronson, W.T. Reynolds, G.R. Purdy, Metall. Mater. Trans. A 37A, 1731–1745 (2006).

    Article  Google Scholar 

  13. A. Borgenstam, M. Hillert, J. Agren, Acta Mater. 57, 3242–3252 (2009).

    Article  Google Scholar 

  14. F. Fazeli, M. Militzer, ISIJ 52, 650–658 (2012).

    Article  Google Scholar 

  15. W.T. Reynolds, S.K. Liu, F.Z. Li, S. Hartfield, H.I. Aaronson, Metall. Trans. A 21A, 1479–1491 (1990).

    Article  Google Scholar 

  16. W.T. Reynolds, F.Z. Li, C.K. Shui, H.I. Aaronson, Metall. Trans. A 21A, 1433–1463 (1990).

    Article  Google Scholar 

  17. M. Hillert: “Introduction to Paraequilibrium”, Internal Report, Swedish Institute of Metals Research, Stockholm, 1953.

  18. A. Hultgren, Trans. ASM 39, 915–1005 (1947).

    Google Scholar 

  19. H. Chen, K. Zhu, L. Zhao, S. van der Zwaag, Acta Mater. 61, 5458–5468 (2013).

    Article  Google Scholar 

  20. H. Chen, A. Borgenstam, J. Odqvist, I. Zuazo, M. Goune, J. Agren, S. van der Zwaag, Acta Mater. 61, 4512–4523 (2013).

    Article  Google Scholar 

  21. K. Lucke, K. Detert, Acta Metall. 5, 628–637 (1957).

    Google Scholar 

  22. J.W. Cahn, Acta Metall. 10, 789–98 (1962).

    Google Scholar 

  23. M. Hillert, B. Sundman, Acta Metall. 24, 731–743 (1976).

    Google Scholar 

  24. G.R. Purdy, Y.J.M. Brechet, Acta Metall. 43, 3763–3774 (1995).

    Google Scholar 

  25. M. Enomoto, Acta Mater. 47, 3533–3540 (1999).

    Google Scholar 

  26. K.M. Wu, M. Kagayama, M. Enomoto, Mater. Sci. Eng. A 343, 143–150 (2003).

    Google Scholar 

  27. H. Guo, M. Enomoto, Metall. Mater. Trans. A 38, 1152–1161 (2007).

    Google Scholar 

  28. C. Qiu, H.S. Zurob, D. Panahi, Y.J.M. Brechet, G.R. Purdy, and C.R. Hutchinson: Metall. Mater. Trans. A, 2012, DOI:10.1007/s11661-012-1547-0.

  29. H.S. Zurob, D. Panahi, C.R. Hutchinson, Y.J.M. Brechet, and G.R. Purdy: Metall. Mater. Trans. A, 2012, DOI:10.1007/s11661-012-1479-8.

  30. J. Fridberg, L.E. Törndahl, M. Hillert, Jernkont. Ann. 153, 263–275 (1969).

    Google Scholar 

  31. Thermo-Calc is Trademark of Thermo-Calc Software: http://www.thermocalc.com/.

  32. M. Hillert, Metall. Mater. Trans. A 25A, 1957–1966 (1994).

    Google Scholar 

  33. M. Enomoto, C.L. White, H.I. Aaronson, Metall. Trans. A 19A, 1807–1818 (1988).

    Google Scholar 

  34. H. Chen, M. Goune, S. van der Zwaag, Comput. Mater. Sci. 55, 34–43 (2012).

    Google Scholar 

  35. H. Chen, R. Kuziak, S. van der Zwaag, Metall. Mater. Trans. A 44, 5617–5623 (2013).

    Google Scholar 

Download references

Acknowledgments

This research was funded by Arcelor Mittal, France.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hao Chen.

Additional information

Manuscript submitted October 12, 2013.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, H., van der Zwaag, S. Predicting the Effect of Mo, Ni, and Si on the Bainitic Stasis . Metall Mater Trans A 45, 3429–3437 (2014). https://doi.org/10.1007/s11661-014-2262-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-014-2262-9

Keywords

Navigation