Skip to main content

Advertisement

Log in

Modeling of the Austenitization of Ultra-high Strength Steel with Cellular Automation Method

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

An Erratum to this article was published on 21 May 2014

Abstract

A model for simulating the austenitization of ultra-high strength steel during hot stamping is developed using a cellular automata approach. The microstructure state before quenching can be predicted, including grain size, volume fraction of austenite, and distribution of carbon concentration. In this model, a real initial microstructure is used as an input to simulate austenitization, and the intrinsic chemical difference is utilized to describe the ferrite and pearlite phases. The kinetics of austenitization is simulated by simultaneously considering continuous nucleation, grain growth, and grain coarsening. The UHSS is reduced to a Fe-Mn-C ternary system to calculate the driving force during extent growth in ferrite. The simulation results show that the transformation of ferrite to austenite can be divided into three stages in the condition of a heating rate of 10 K (−263 °C)/s. The transformation rate is determined by two factors, carbon concentration and temperature. The carbon concentration plays a major role at the early stages, as well as the temperature is the main factor at the later stages. The A c3 calculated is about 1073 K (800 °C) close to the measured value [1067.1 K (794.1 °C)]. Austenite grain coarsening was calculated by a curvature-driven model. The simulated morphology of the microstructure agrees well with the experimental result. Most of the dihedrals of the grain boundaries at the triple junctions are close to 120 deg. Finally, tensile tests were implied, as dwelling time increased from 3 to 10 minutes, the austenite grain size increased from 6.95 to 9.44 μm while the tensile strength decreased from 276.4 to 258.3 MPa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. H. Karbasian, and A.E. Tekkaya: J. Mater. Process. Technol., 2010, vol. 210, pp. 2103-18.

    Article  Google Scholar 

  2. H. Liu, X. Lu, X. Jin, H. Dong, and J. Shi: Scripta Mater., 2011, vol. 64, pp. 749-52.

    Article  Google Scholar 

  3. H. Kim, T. Altan, and Q. Yan: J. Mater. Process. Technol., 2009, vol. 209, pp. 4122-33.

    Article  Google Scholar 

  4. P. Sepehrband, and S. Esmaeili: Scripta Mater., 2010, vol. 63, pp. 4-7.

    Article  Google Scholar 

  5. H. Emmerich, and D. Pilipenko: Scripta Mater., 2012, vol. 66, pp. 125-27.

    Article  Google Scholar 

  6. A. Turetta, S. Bruschi, and A. Ghiotti: J. Mater. Process. Technol., 2006, vol. 177, pp. 396-400.

    Article  Google Scholar 

  7. B.J. Yang, L. Chuzhoy, and M.L. Johnson: Comput. Mater. Sci., 2007, vol. 41, pp. 186-94.

    Article  Google Scholar 

  8. K.G.F. Janssens: Math. Comput. Simul., 2010, vol. 80, pp. 1361-81.

    Article  Google Scholar 

  9. B.J. Yang, A. Hattiangadi, W.Z. Li, G.F. Zhou, and T.E. McGreevy: Mater. Sci. Eng. A, 2010, vol. 527, pp. 2978-84.

    Article  Google Scholar 

  10. A. Jacot, and M. Rappaz: Acta Mater., 1999, vol. 47, pp. 1645-51.

    Article  Google Scholar 

  11. D. Raabe, and L. Hantcherli: Comput. Mater. Sci., 2005, vol. 34, pp. 299-313.

    Article  Google Scholar 

  12. Y. Vertyagina, M. Mahfouf, and X. Xu: J. Mater. Sci., 2013, vol. 48, pp. 5517-27.

    Article  Google Scholar 

  13. E.A. Lazar, J.K. Mason, R.D. MacPherson, and D.J. Srolovitz: Acta Mater., 2011, vol. 59, pp. 6837-47.

    Article  Google Scholar 

  14. T. Wejrzanowski, K. Batorski, and K.J. Kurzydłowski: Mater. Charact., 2006, vol. 56, pp. 336-39.

    Article  Google Scholar 

  15. F.G. Caballero, C. Capdevila, and C.G. Andrés: Metall. Mater. Trans. A, 2001, vol. 32A, pp. 1283-91.

    Article  Google Scholar 

  16. M. Hillert: Acta Mater., 1999, vol. 47, pp. 4481-505.

    Article  Google Scholar 

  17. J. Svoboda, F.D. Fischer, P. Fratzl, E. Gamsjäger, and N.K. Simha: Acta Mater., 2001, vol.49, pp.1249-59.

    Article  Google Scholar 

  18. C. Zheng, D. Li, S. Lu, and Y. Li: Scripta Mater., 2008, vol.58, pp. 838-41.

    Article  Google Scholar 

  19. M. Tong, D. Li, and Y. Li: Acta Mater., 2003, vol. 52, pp. 1155-62.

    Article  Google Scholar 

  20. P. Zhu, and R.W. Smith: Acta Metall. Mater., 1992, vol. 40, pp. 683-92.

    Article  Google Scholar 

  21. R.J. Weiss, and K.J. Tauer: Phys. Rev., 1956, vol. 102, pp. 1490-95.

    Article  Google Scholar 

  22. Y.J. Lan, D.Z. Li, and Y.Y. Li: Acta Mater., 2004, vol. 52, pp. 1721-29.

    Article  Google Scholar 

  23. Y.J. Lan, D.Z. Li, and Y.Y. Li: Metall. Mater. Trans. B, 2006, vol. 37B, pp. 119-29.

    Article  Google Scholar 

  24. B. Pawłowski (2011) J. Achiev. Mater. Manuf. Eng., vol. 2, pp. 331-38.

    Google Scholar 

  25. H.B. Dong, and P.D. Lee: Acta Mater., 2005, vol. 53, pp. 659-68.

    Article  Google Scholar 

  26. S. Lee, D.K. Matlock, and C.J. Van Tyne: ISIJ Int., 2011, vol. 51, pp. 1903-11.

    Article  Google Scholar 

  27. J. Geiger, A. Roósz, and P. Barkóczy, Acta Mater., 2001, vol. 49, pp. 623-29.

    Article  Google Scholar 

  28. C. Zheng, N. Xiao, D. Li, and Y. Li: Comput. Mater. Sci., 2009, vol. 45, pp. 568-75.

    Article  Google Scholar 

Download references

Acknowledgments

This work is funded by Project 51275185, supported by National Natural Science Foundation of China, and by the National Basic Research Program of China (973 Program) (no. 2010CB630802). The authors would also like to express their appreciation to the HUST Analytical and Testing Center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yisheng Zhang.

Additional information

Manuscript submitted May 3, 2013.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhu, B., Zhang, Y., Wang, C. et al. Modeling of the Austenitization of Ultra-high Strength Steel with Cellular Automation Method. Metall Mater Trans A 45, 3161–3171 (2014). https://doi.org/10.1007/s11661-014-2255-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-014-2255-8

Keywords

Navigation