Skip to main content
Log in

On the Texture Formation of Selective Laser Melted Ti-6Al-4V

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Selective laser melting (SLM) has been shown to be an attractive manufacturing route for the production of α/β titanium alloys. The relationship between the SLM process parameters and the microstructure of titanium alloys has been the object of several works, but the texture formation during the SLM process has yet to be understood. In the present study, the texture formation of Ti-6Al-4V components was investigated in order to clarify which microstructural features can be tailored during the SLM process. The microstructural characterization of the as-built components was carried out using various microscopy techniques. Phase and texture analysis were carried out using backscattered electron imaging and diffraction. It was found that as-built components consist exclusively of α′ martensitic phase precipitated from prior β columnar grains. The texture of the prior β phase was reconstructed and discussed in relation to the used SLM process parameters. It was found that the β grain solidification is influenced by the laser scan strategy and that the β phase has a strong 〈100〉 texture along its grain growth direction. The α′ martensitic laths that originate from the parent β grains precipitate according to the Burgers orientation relationship. It was observed that α′ laths clusters from the same β grain have a specific misorientation that minimizes the local shape strain. Texture inheritance across successive deposited layers was also observed and discussed in relation to various variant selection mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. M. Baumers, C. Tuck, R. Wildman, I. Ashcroft, and R. Hague: Proceedings of the Solid Freeform Fabrication Symposium, 2011.

  2. C. Tuck, R. Hague, N. Burns: International Journal of Services and Operations Management, 2007, vol. 3, pp. 1-22.

    Google Scholar 

  3. L. Murr, S. Quinones, S. Gaytan, M. Lopez, A. Rodela, E. Martinez, D. Hernandez, F. Medina, R. Wicker: J Mech Behav Biomed, 2009, vol. 2, pp. 20-32.

    Article  Google Scholar 

  4. A. Gebhardt, F. Schmidt, J. Hötter, W. Sokalla, P. Sokalla: Phys. Procedia, 2010, vol. 5B, pp. 543–49.

    Article  Google Scholar 

  5. E. Chlebus, B. Kuznicka, T. Kurzynowski, B. Dybala: Mater Charact, 2011, vol. 62, pp. 488-495.

    Article  Google Scholar 

  6. L. Facchini, E. Magalini, P. Robotti, A. Molinari, S. Hoeges, K. Wissenbach: Rapid Prototyping J., 2010, vol. 16, pp. 450-459.

    Article  Google Scholar 

  7. B. Vrancken, L. Thijs, J.P. Kruth, J.V. Humbeeck: J Alloy Compd, 2012, vol. 54, pp. 177-185.

    Article  Google Scholar 

  8. T. Sercombe, N. Jones, R. Day, A. Kop: Rapid Prototyping J., 2008, vol. 14, pp. 300-04.

    Article  Google Scholar 

  9. L. Thijs, F. Verhaeghe, T. Craeghs, J.V. Humbeeck, J.P. Kruth: Acta Mater 2010, vol. 58, pp. 3303-3312.

    Article  Google Scholar 

  10. D. Gu, Y. Hagedorn, W. Meiners, G. Meng, R.J.S. Batista, K. Wissenbach, R. Poprawe: Acta Mater., 2012; vol. 60, pp. 3849-3860.

    Article  Google Scholar 

  11. T. Vilaro, C. Colin, J.D. Bartout: Metall. Mater. Trans. A, 2011, vol. 42, pp. 3190-3199.

    Article  Google Scholar 

  12. B. Song, S. Dong, B. Zhang, H. Liao, C. Coddet: Mater Des 2012, vol. 35, pp. 120-125.

    Article  Google Scholar 

  13. B. Baufeld, O.V. Biest: Sci Tech Adv Mater, 2009, vol. 10, 015008.

    Article  Google Scholar 

  14. B. Baufeld, E. Brandl, O.V. Biest: J Mater Process Technol, 2011, vol. 211, pp. 1146–1158.

    Article  Google Scholar 

  15. S. Al-Bermani, M. Blackmore, W. Zhang, I. Todd: Metall. Mater. Trans. A, 2010, vol. 41, pp. 3422-3434.

    Article  Google Scholar 

  16. S. Kelly, S. Kampe: Metall. Mater. Trans. A, 2004, vol.35, pp. 1861-1867.

    Article  Google Scholar 

  17. L. Zhang, D. Klemm, J. Eckert, Y.Hao, T. Sercombe: Scr Mater, 2011, vol. 65, pp.21-24.

    Article  Google Scholar 

  18. T. Vilaro, V. Kottman-Rexerodt, M. Thomas, C. Colin, P. Bertrand, L. Thivillon, S. Abed, V. Ji, P. Aubry, P. Peyre, T. Malot: Adv Mat Res, 2010, vol. 89-91, pp. 586-591.

    Article  Google Scholar 

  19. G.C. Obasi, S. Birosca, D.G. Leo Prakash, J. Quinta da Fonseca, M. Preuss: Acta Mater, 2012, vol. 60, pp. 6013-6024.

    Article  Google Scholar 

  20. G.C. Obasi, S. Birosca, J. Quinta da Fonseca, M. Preuss: Acta Mater, 2012, vol. 60, pp. 1048-1058.

    Article  Google Scholar 

  21. M. Humbert, F. Wagner, H. Moustahfid, C. Esling: J Appl Cryst, 1995, vol. 28, pp. 571-576.

    Article  Google Scholar 

  22. M. Humbert, N. Gey, J. Muller, C. Esling: J Appl Cryst, 1996, vol. 29, pp. 662-666.

    Article  Google Scholar 

  23. M.G. Glavicic, P.A. Kobryn, T.R. Bieler, S.L. Semiatin: Mater Sci Eng A, 2003, vol. 351, pp. 258-264.

    Article  Google Scholar 

  24. M.G. Glavicic, P.A. Kobryn, T.R. Bieler, S.L. Semiatin: Mater Sci Eng A, 2003, vol. 346, pp. 50-59.

    Article  Google Scholar 

  25. M. Simonelli, C. Tuck, Y.Y. Tse: J Phys Conf Ser, 2012, vol. 371(1):012084).

    Article  Google Scholar 

  26. Renishaw Apply Innovation, 2012. http://www.renishaw.com/en/am250-laser-melting-machine--15253. Accessed Feb 2014.

  27. M. Simonelli, Y.Y. Tse, and C. Tuck: Proceedings of the Solid Freeform Fabrication Symposium, 2012.

  28. I. Lonardelli, N. Gey, H. Wenk, M. Humbert, S.C. Vogel, L. Lutterotti: Acta Mater, 2007, vol. 55, pp. 5718-5727.

    Article  Google Scholar 

  29. M.R. Daymond, R.A. Holt, S. Cai, P. Mosbrucker, S.C. Vogel: Acta Mater, 2010, vol. 58, pp. 4053-4066.

    Article  Google Scholar 

  30. R. Boyer, E.W. Collings, Materials Properties Handbook: Titanium Alloys, ASM International, Materials Park, OH, 1994; pp. 483–633.

    Google Scholar 

  31. I.A. Roberts, C.J. Wang, R. Esterlein, M. Stanford, D.J. Mynors: Int J Mach Tool Manu, 2009, vol. 49, pp. 916-923.

    Article  Google Scholar 

  32. M.G. Glavicic, P. Kobryn, S.L. Semiatin: Mater Sci Eng A, 2004, vol. 385, pp. 372-376.

    Article  Google Scholar 

  33. P. Kobryn, S.L. Semiatin: J Mater Process Technol., 2003, vol. 135, pp. 330-339.

    Article  Google Scholar 

  34. B. Baufeld, O.V. Biest, S. Dillien: Metall Mater Trans A, 2010, vol. 41, pp.1917-1927.

    Article  Google Scholar 

  35. S.C. Wang, M. Aindow, M.J. Starink: Acta Mater, 2003, vol. 51, pp. 2485-2503.

    Article  Google Scholar 

  36. D. Bhattacharyya, G. Viswanathan, R. Denkenberger, D. Furrer, H.L. Fraser: Acta mater, 2003, vol. 51, pp. 4679-4691.

    Article  Google Scholar 

  37. D. Bhattacharyya, G.B. Viswanathan, H.L. Fraser: Acta Mater, 2007, vol. 55, pp. 6765-6778.

    Article  Google Scholar 

  38. N. Stanford, P.S. Bate: Acta Mater, 2004, vol. 52, pp. 5215-5224.

    Article  Google Scholar 

  39. M. Humbert, L. Germaine, N. Gey, P. Bocher, M. Jahazi: Mater. Sci. Eng. A, 2006, vol. 430, 157–164.

    Article  Google Scholar 

  40. G.A. Sargent, K.T. Kinsel, A.L. Pilchak, A.A. Salem, S.L. Semiatin: Metall. Mater. Trans. A, 2012, vol. 43, pp. 3570-3585.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Simonelli.

Additional information

Manuscript submitted October 3, 2013.

Appendix A

Appendix A

One method to express the 3D orientation of a crystal is to define the rotation of the crystal coordinate system relative to the sample coordinate system and consider the symmetry of the crystal itself. The rotation of the crystal is generally described by a triplet of angles, known as Euler angles, (φ 1, Φ, φ 2), that express the consecutive rotations about the axis of the crystal coordinate system that are needed to bring the crystal coordinate system into coincidence with the sample coordinate system (i.e., passive rotations). In the present study a crystal coordinate system for the α and β phases was chosen as defined in the software OIM TM 5.2 of the EDAX-TSL system. The 3D rotations were then expressed according to the Bunge’s convention as follow:

$$ R(\varphi 1,\varphi ,\varphi 2) = \left[ {\begin{array}{*{20}c} {\cos \varphi 1\cos \varphi 2 - \sin \varphi 1\sin \varphi 2\cos \varphi } \hfill & {\sin \varphi 1\cos \varphi 2 + \cos \varphi 1\sin \varphi 2\cos \varphi } \hfill & {\sin \varphi 2\sin \varphi } \hfill \\ { - \cos \varphi 1\sin \varphi 2 - \sin \varphi 1\cos \varphi 2\cos \varphi } \hfill & { - \sin \varphi 1\sin \varphi 2 + \cos \varphi 1\cos \varphi 2\cos \varphi } \hfill & {\cos \varphi 2\sin \varphi } \hfill \\ {\sin \varphi 1\sin \varphi } \hfill & { - \cos \varphi 1\sin \varphi } \hfill & {\cos \varphi } \hfill \\ \end{array} } \right] $$

Because of the crystal symmetry however, multiple rotations can result in an equivalent 3D orientation of a certain crystal. For this reason, it was also necessary to take into account the rotational symmetry elements of α and β phases in order to be able to distinguish independent orientations. The rotational symmetry elements of the α and β phases (12 and 24, respectively) used in this study are listed in the form of rotational matrices (Bunge’s convention) in Tables I and II.[22] As the α and β phases are related through the Burgers orientation relationship which is equivalent to a Bunge’s rotation expressed by the matrix D (135, 90, 325 deg), it has been shown that starting from three α grain orientations it is possible to the determine the parent β grain orientation with accuracy and conversely each β grain can generate 12 distinct α grain orientations (α variants).[21,22] In the present study, the 12 α variants generated from one single β grain correspond to the set of rotations listed in Table III.

Table I Rotational Elements of the Cubic Symmetry
Table II Rotational Elements of the Hexagonal Symmetry
Table III α Grain Rotations Deriving from a Single Parent β Grain

Rights and permissions

Reprints and permissions

About this article

Cite this article

Simonelli, M., Tse, Y.Y. & Tuck, C. On the Texture Formation of Selective Laser Melted Ti-6Al-4V. Metall Mater Trans A 45, 2863–2872 (2014). https://doi.org/10.1007/s11661-014-2218-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-014-2218-0

Keywords

Navigation