Advertisement

Metallurgical and Materials Transactions A

, Volume 45, Issue 5, pp 2545–2552 | Cite as

A Method for the Estimation of the Interface Temperature in Ultrasonic Joining

  • Tianyu Hu
  • Soheil Zhalehpour
  • Andrew Gouldstone
  • Sinan Muftu
  • Teiichi AndoEmail author
Article

Abstract

Ultrasonic joining of copper foil to 1100 aluminum sheet at nominal joining temperatures of 298 K to 413 K (25 °C to 140 °C) for 1.25 second caused significant copper diffusion into the aluminum sheet, indicating very high diffusivity (D) values of 1.54 × 10−13 to 2.22 × 10−13 m2/s. The D values reflect high excess vacancy concentrations caused by the rapid plastic deformation in the joining surfaces. A method is presented to estimate the actual values of interface temperature from the diffusion data and expected values of vacancy concentrations. The estimated values of interface temperature were about 390 to 410 deg below the equilibrium melting point of aluminum, and in agreement with reported experimental values.

Keywords

Interface Temperature Solid Aluminum Excess Vacancy Melting Point Depression Liquid Diffusivity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The authors thank the National Science Foundation for supporting this work under Grant CMMI-1130027 and the technical staff of Stapla Ultrasonics, Wilmington, MA for their assistance in calibrating the ultrasonic welder.

References

  1. 1.
    J. B. Jones and J. J. Powers: Weld. J., 1956, vol.35, pp. 761-66.Google Scholar
  2. 2.
    G. G. Harman: Wire Bonding in Microelectronics: Materials, Processes, Reliability and Yield, 2nd ed., McGraw-Hill Book Co., New York, 1997.Google Scholar
  3. 3.
    V.H. Winchell and H.M. Berg: IEEE Trans. Compon., Hybrids, Manuf. Technol., 1978, vol. CHMT-1, No. 3, pp. 211–19.Google Scholar
  4. 4.
    T. Ueoka and J. Tsujino: Jpn. J. Appl. Phys., 2002, vol. 41, no.5B, pp. 3237-42.CrossRefGoogle Scholar
  5. 5.
    Y. Yang, G.D. Janaki Ram, and B.E. Stucker: J. Mater. Process. Technol., 2009, vol. 209, pp. 4915–24.Google Scholar
  6. 6.
    M. R. Sriraman, S. S. Babu, and M. Short: Script. Mater., 2010, vol. 62, pp. 560-63.CrossRefGoogle Scholar
  7. 7.
    D. Erdeniz and T. Ando, Int. J. Mater. Res., 2013, vol. 104, no.4, pp. 386-91.CrossRefGoogle Scholar
  8. 8.
    K. C. Joshi, Weld. J., 1971, vol. 50, pp. 840-48.Google Scholar
  9. 9.
    R. Jahn, R. Cooper, and D. Wilkosz: Metall. Mater. Trans. A, 2007, vol. 38A, pp. 570-83.Google Scholar
  10. 10.
    A. Panteli, J. D. Robson, I. Brough, and P. B. Prangnell: Mater. Sci. and Eng. A., 2012, vol. 556, pp. 31-42.CrossRefGoogle Scholar
  11. 11.
    S.S. Lee, T.H. Kim, S.J. Hu, W.W. Cai, J.A. Abell, and J. Li: J. Manuf. Sci. Eng., 2013, vol. 135(2), pp. 021004-1–4-13.Google Scholar
  12. 12.
    M. Okada, S. Shin, M. Miyagi and H. Matsuda: Trans. JIM, 1963, vol. 4, no. 4, pp. 250-56.Google Scholar
  13. 13.
    T.H. Hazlett and S.M. Ambekar: Weld. Res. Suppl. 1970, vol. 49, pp. 196–200.Google Scholar
  14. 14.
    H.-D. Golde: Ultrasonic Metal Welding: Principles and Applications of High-Grade Bonding Technology, Verlag-Moderne Industrie/Stapla Ultrasonics Corporation, Landsberg am Lech, Germany, 1997.Google Scholar
  15. 15.
    J. Wodara: ZIS-Mitteilungen, 1986, vol. 28, no.1, pp. 102-08.Google Scholar
  16. 16.
    H. Kreye: Weld. Res. Suppl., 1977, vol. 56, pp. 154–58.Google Scholar
  17. 17.
    A. Seeger: Defects in Crystalline Solids, Physical Soc, London, 1955, p. 391.Google Scholar
  18. 18.
    J. Awatani, K. Katagiri, and A. Koreeda: Bull. JSME, 1969, vol. 12(53), pp. 940–46.Google Scholar
  19. 19.
    H. Ohkubo, Y. Shimomura, I. Mukouda, K. Sugio and M. Kiritani: Mater. Sci. and Eng. A, 2003 vol. 350, pp. 30-36.CrossRefGoogle Scholar
  20. 20.
    M. Kiritani, Y. Satoh, Y. Kizuka, K. Arakawa, Y. Ogasawara, S. Arai, and Y. Shimomura: Philos. Mag. Lett., 1999, vol.79, no. 10, pp. 797-804.CrossRefGoogle Scholar
  21. 21.
    F. E. Fujita: Mater. Sci. Eng. A, 2003, vol. 350, pp. 216-19.CrossRefGoogle Scholar
  22. 22.
    S. Kojima and H. Fuji: Mater. Trans., 2006, vol. 47, no. 2, pp. 298-301.CrossRefGoogle Scholar
  23. 23.
    J. Schiøtz, T. Leffers, and B. N. Singh: Philos. Mag. Lett., 2001, vol. 91, pp. 301-09.CrossRefGoogle Scholar
  24. 24.
    X.L. Wu, B. Li and E. Ma: Appl. Phys. Lett., 2007, vol. 91, pp. 1419081–1419083.Google Scholar
  25. 25.
    M. Zehetbauer, G. Steiner, E. Schafler, A. V. Korznikov, and E. Korznikova: Mater. Sci. Forum, 2006, 503-504, 57-64.CrossRefGoogle Scholar
  26. 26.
    D.S. Colanto: Ph.D. Thesis, Northeastern University, Boston, MA, 2010.Google Scholar
  27. 27.
    K. Murty, K. Detemple, O. Kanert, and J. Th. M. DeHosson: Met. and Mater. Trans. A, 1998, vol. 29A, pp. 153-59.CrossRefGoogle Scholar
  28. 28.
    G. Thomas and R.H. Willens: Acta Metall., 1964, vol. 12, pp. 191-196.CrossRefGoogle Scholar
  29. 29.
    A.V. Kulemin and Y.V. Kholopov: Avt. Svarka, 1980, vol. 6, pp. 13–14.Google Scholar
  30. 30.
    T. Enjo, K. Ikeuchi and H. Fujita, Trans. JWRI, 1986, vol. 15, pp. 289-96.Google Scholar
  31. 31.
    I. E. Gunduz, T. Ando, E. Shattuck, P. Y. Wong, and C. C. Doumanidis: Scr. Mater., 2005, vol. 52, pp. 939-43.CrossRefGoogle Scholar
  32. 32.
    J.B. Jones, N. Maropis, J.G. Thomas, and D. Bancroft: Weld. J., 1961, vol. 40(7), pp. 289–305.Google Scholar
  33. 33.
    J. Tsujino, T. Ueoka, Y. Asada, S. Taniguchi, and Y. Iwamura: Jpn. J. Appl. Phys., 1988, vol. 37, no. 5B, pp. 2996-3000.Google Scholar
  34. 34.
    S. Yadav and C. Doumanidis: J. Manuf. Process., 2005, vol. 7, no. 2, pp. 153-61.CrossRefGoogle Scholar
  35. 35.
    E. de Vries: PhD Thesis, The Ohio State University, 2004.Google Scholar
  36. 36.
    J. D. Goldstein, D. E. Newbury, C. E. Joy, C. E. Lyman, P. Echlin, E. Lifshin, L. Sawyer, and J. R. Michael: Scanning Electron Microscopy and X-ray Microanalysis, 3rd. ed., Springer, New York, NY, 2003.CrossRefGoogle Scholar
  37. 37.
    P. Shewmon: Diffusion in Solids, TMS, Warrendale, PA, 1989.Google Scholar
  38. 38.
    M. S. Anand, S. P. Murarka, and R. P. Agarwala: J. Appl. Phys., 1965, vol. 36, no.12, pp. 3860-62.CrossRefGoogle Scholar
  39. 39.
    A. D. King and J. Burke: Acta Metall., 1970, vol.18, no.2, pp. 205-10.CrossRefGoogle Scholar
  40. 40.
    R. O. Simmons and R. W. Balluffi: Phys. Rev., 1960, vol.117, no. 1, pp. 52-61.CrossRefGoogle Scholar
  41. 41.
    S. Rokkam, A. El-Azab, P. Millett, and D. Wolf: Model. Simul. Mater. Sci. Eng., 2009, vol. 17, p. 064002.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2014

Authors and Affiliations

  • Tianyu Hu
    • 1
  • Soheil Zhalehpour
    • 1
  • Andrew Gouldstone
    • 1
  • Sinan Muftu
    • 1
  • Teiichi Ando
    • 1
    Email author
  1. 1.Department of Mechanical and Industrial EngineeringNortheastern UniversityBostonUSA

Personalised recommendations