Skip to main content
Log in

Indentation Size Effect (ISE) in Copper Subjected to Severe Plastic Deformation (SPD)

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The characteristic length scale of deformation in copper specimens subjected to severe plastic deformation (SPD) through surface mechanical attrition treatment (SMAT) was studied with indentation experiments. Annealed copper disks were shot peened with 6-mm diameter tungsten carbide spheres with an average velocity of 2.3 m/s for 15 minutes in a vibrating chamber. The SMAT-treated specimens were cross-sectioned, and the exposed face was studied under nanoindentation in order to determine the effect of dislocation density on surface hardness and indentation size effect (ISE). Since the specimen preparation of the exposed face involved mechanical polishing, which in turn introduced additional SPD on the indenting face, the effect of mechanical polishing on hardness measurement was investigated first. To this end, the mechanically polished specimens were subjected to various durations of electrochemical polishing. Hardness measurements on these specimens showed that the effect of mechanical polishing was substantial for both microindentation and nanoindentation, the impact being significantly larger for nanoindentation. Consequently, the measured depth of influence of the SMAT process, determined on specimens subjected to longer durations of electrochemical polishing, shows larger values compared to those previously reported in the literature. The ISE shows a bilinear relationship between the square of hardness and the reciprocal of indentation depth. The slope of this behavior, corresponding to smaller indentation loads, which is a measure of the ISE associated with a strain gradient, shows a power-law relationship with an increase in the distance away from the SMAT surface, instead of the constant value expected with the Nix–Gao type model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. S. Dub, Y. Lim, M. Chaudhri, J. Appl. Phys. 107 (2010) 043510-15.

    Article  Google Scholar 

  2. W. D. Nix, H. Gao, J. Mech. Phys. Solids 46 (1998) 411 –25.

    Article  Google Scholar 

  3. Q. Ma, D. R. Clarke, J. Mater. Res. 10 (1995) 853 –63.

    Article  Google Scholar 

  4. K. McElhaney, J. Vlasssak, W. Nix, J. Mater. Res. 13 (1998) 1300–6.

    Article  Google Scholar 

  5. Y. Y. Lim, M. M. Chaudhri, Philos. Mag. A 79 (1999) 2979–3000.

    Article  Google Scholar 

  6. K. Durst, B. Backes, M. Gken, Scr. Mater. 52 (2005) 1093 –7.

    Article  Google Scholar 

  7. G. Feng, W. D. Nix, Scr. Mater. 51 (2004) 599 – 603.

    Article  Google Scholar 

  8. J. Swadener, E. George, G. Pharr, J. Mech. Phys. Solids 50 (2002) 681 –94.

    Article  Google Scholar 

  9. M. Rester, C. Motz, and R. Pippan, J. Mater. Res. 24(3) (2009) 647–51.

    Article  Google Scholar 

  10. M. Rester, C. Motz, R. Pippan, Scr. Mater. 59 (2008) 742 –5.

    Article  Google Scholar 

  11. M. Rester, C. Motz, R. Pippan, Acta Mater. 55 (2007) 6427 –35.

    Article  Google Scholar 

  12. A. Elmustafa, D. Stone, Acta Mater. 50 (2002) 3641 –50.

    Article  Google Scholar 

  13. B. Yang, H. Vehoff, Acta Mater. 55 (2007) 849 –56.

    Article  Google Scholar 

  14. G. M. Pharr, E. G. Herbert, Y. Gao, Annu. Rev. Mater. Res. 40 (2010) 271–92.

    Article  Google Scholar 

  15. Y. Liu, A. Ngan, Scr. Mater. 44 (2001) 237 –41.

    Article  Google Scholar 

  16. H. Fecht and Y. Ivanisenko: in Nanostructured Materials, 2nd ed., C.C. Koch, ed., William Andrew Publishing, Norwich, NY, 2007, pp. 119–72.

  17. J. Jiang, J. Ren, A. Shan, J. Liu, H. Song, Mater. Sci. Eng., A 520 (2009) 80 –9.

    Article  Google Scholar 

  18. J. Lu and K. Lu: in Comprehensive Structural Integrity, I. Milne, R.O. Ritchie, and B. Karihaloo, eds., Pergamon, Oxford, 2003, pp. 495–528.

  19. K. Lu, J. Lu, Mater. Sci. Eng., A 375 (2004) 38 – 45.

    Article  Google Scholar 

  20. B. Arifvianto, M. Suyitno, M. Mahardika, P. Dewo, P. Iswanto, and U. Salim: Mater. Chem. Phys., 2011, vol. 125, pp. 418–26.

    Article  Google Scholar 

  21. U. Erb, K.T. Aust, and G. Palumbo: in Nanostructured Materials: Processing, Properties and Applications, chap. 6, C.C. Koch, ed., William Andrew Publishing, Norwich, NY, 2007, pp. 119–72.

  22. L. Huang, J. Lu, M. Troyon, Surf. Coat. Technol. 201 (2006) 208 –13.

    Article  Google Scholar 

  23. J. Chen, L. Lu, K. Lu, Scripta Materialia 54 (2006) 1913 –8.

    Article  Google Scholar 

  24. Y. Zhang, Z. Han, K. Wang, K. Lu, Wear 260 (2006) 942 –8.

    Article  Google Scholar 

  25. A. M. Gatey, S. S. Hosmani, R. Singh, S. Suwas, Advanced Materials Research 794 (2013) 238–47.

    Article  Google Scholar 

  26. J. Tian, J. Villegas, W. Yuan, D. Fielden, L. Shaw, P. Liaw, D. Klarstrom, Materials Science and Engineering A 468-470 (2007) 164 –70.

    Article  Google Scholar 

  27. H. Gao, Y. Huang, W. Nix, J. Hutchinson, Journal of the Mechanics and Physics of Solids 47 (1999) 1239 –63.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ajit Achuthan.

Additional information

Manuscript submitted July 4, 2013.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gale, J.D., Achuthan, A. & Morrison, D.J. Indentation Size Effect (ISE) in Copper Subjected to Severe Plastic Deformation (SPD). Metall Mater Trans A 45, 2487–2497 (2014). https://doi.org/10.1007/s11661-014-2201-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-014-2201-9

Keywords

Navigation