Skip to main content
Log in

Dendritic Growth in Mg-Based Alloys: Phase-Field Simulations and Experimental Verification by X-ray Synchrotron Tomography

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Changes in polycrystalline dendritic growth patterns during solidification result in a variety of solidified dendritic structures and morphologies. These microstructural changes are induced by a variety of effects such as the random distribution of nucleation sites and orientations, the interaction of growing individual dendritic grains, and effects of solid-liquid interfacial energy anisotropy. Here, we have studied the formation of the complicated and diverse dendrite morphologies both experimentally, by electron backscatter diffraction and by X-ray tomography; and numerically by three-dimensional phase-field simulations. Three binary magnesium alloys were considered in this study: Mg-Al, Mg-Zn, and Mg-Sn alloys. We show that the solidification microstructure can be attributed to the following factors: The interaction of the growing dendrites, the anisotropy of the growth, and the distribution and initial random orientations of nucleation sites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Kurz W., Fisher D.J. Fundamentals of Solidification, fourth ed. Switzerland: Trans Tech; 1998.

    Google Scholar 

  2. Campbell J. Castings, second ed. Oxford: Butterworth-Heinemann; 2003.

    Google Scholar 

  3. Dantzig J., Rappaz M. Solidification, first ed. Lausanne: EPFL Press; 2009.

    Book  Google Scholar 

  4. Glicksman M. Principles of Solidification, first ed. New York: Springer; 2010.

    Google Scholar 

  5. Asta M., Beckermann C., Karma A., Kurz W., Napolitano R., Plapp M., Purdy G., Rappaz M., Trivedi R. Acta Mater. 2009;57:941-71.

    Article  Google Scholar 

  6. V. Fleury, J.-F. Gouyet, and M. Leonetti eds.: Branching in Nature, 1st ed., Springer, Berlin, 2001.

  7. Ben-Jacob E., Levine H. Nature 2001;409:985-986.

    Article  Google Scholar 

  8. Gollub J.P., Langer J.S. Rev. Mod. Phys. 1999;71:S396-S403.

    Article  Google Scholar 

  9. Haxhimali T., Karma A., Gonzales F., Rappaz M. Nat. Mater., 2006;5:660-664.

    Article  Google Scholar 

  10. Warren J.A. Nat. Mater., 2006;5:595-96.

    Article  Google Scholar 

  11. Gránásy L., Pusztai T., Warren J.A., Douglas J.F., Börzsönyi T., Ferreiro V. Nat. Mater., 2003;2:92-96.

    Article  Google Scholar 

  12. Singer H.M., Singer I., Bilgram J.H. Phys. Rev. Lett. 2009;103:015501-1–015501-4.

    Article  Google Scholar 

  13. K. Thornton and H.F. Poulsen. MRS Bull. 2008;33:587-629.

    Article  Google Scholar 

  14. Gránásy L., Pusztai T., Börzsönyi T., Warren J.A., Douglas J.F. Nat. Mater., 2004;3:645-650.

    Article  Google Scholar 

  15. Robinson A.L. Science 1984;224:1085-87.

    Article  Google Scholar 

  16. Bragard J., Karma A., Lee Y.H., Plapp M. Interface Sci. 2002;10:121-136.

    Article  Google Scholar 

  17. Pollock T.M. Science 2010;328:986-87.

    Article  Google Scholar 

  18. Agnew S.R., Nie J.F. Scripta Mater. 2010;63:671-673.

    Article  Google Scholar 

  19. Amoorezaei M., Gurevich S., Provatas N. Acta Mater. 2012;60:657-63.

    Article  Google Scholar 

  20. Gurevich S., Amoorezaei M., Montiel D., Provatas N. Acta Mater., 2012;60:3287-95.

    Article  Google Scholar 

  21. Warren J.A., Kobayashi R., Lobkovsky A., Carter W.C. Acta Mater., 2003;51:6035-58.

    Article  Google Scholar 

  22. Kobayashi R., Warren J.A. Phys. A 2005;356:127-32.

    Article  Google Scholar 

  23. Pusztai T., Bortel G., Gránásy L. Europhys. Lett. 2005;71:131-37.

    Article  Google Scholar 

  24. Hoyt J.J., Asta M., Karma A. Mater. Sci. Eng. R 2003;41:121-63.

    Article  Google Scholar 

  25. Chen L.Q. Annu. Rev. Mater. Res. 2002;32:113-40.

    Article  Google Scholar 

  26. Boettinger W.J., Warren J.A., Beckermann C., Karma A. Annu. Rev. Mater. Res. 2002;32:163-94.

    Article  Google Scholar 

  27. Steinbach I. Model Simul. Mater. Sci. Eng. 2009;17:073001-1–073001-31.

    Article  Google Scholar 

  28. Karma A., Rappel W.-J. Phys. Rev. Lett. 1996;77:4050-53.

    Article  Google Scholar 

  29. Nestler B., Garcke H., Stinner B. Phys. Rev. E 2005;71:041609-1–041609-6.

    Article  Google Scholar 

  30. Nestler B., Wendler F., Selzer M., Stinner B., Garcke H. Phys. Rev. E 2008;78:011604-1–011604-7.

    Article  Google Scholar 

  31. Eiken J., Böttger B., Steinbach I. Phys. Rev. E 2006;73:066122-1–9.

    Article  Google Scholar 

  32. Hecht U., Gránásy L., Pusztai T., Böttger B., Apel M., Witusiewicz V., Ratke L., De Wilde J., Froyen L., Camel D., Drevet B., Faivre G., Fries S.G., Legendre B., Rex S. Mater. Sci. Eng. R 2004;46:1-49.

    Article  Google Scholar 

  33. www.micress.de.

  34. Friedli J., Napoli P.D., Rappaz M., Dantzig J.A. IOP Conf. Ser. Mater. Sci. Eng. 2012;33:012111-1–012111-10.

    Google Scholar 

  35. Friedli J., Fife J.L., Napoli P.D., Rappaz M. IOP Conf. Ser. Mater. Sci. Eng. 2012;33:012034-1–012034-9.

    Google Scholar 

  36. Wang M.Y., Jing T., Liu B.C. Scripta Mater. 2009;61:777-80.

    Article  Google Scholar 

  37. Wang M.Y., Williams J.J., Jiang L., De Carlo F., Jing T., Chawla N. Scripta Mater. 2011;65:855-58.

    Article  Google Scholar 

  38. Wang M.Y., Xu Y.J., Jing T., Peng G.Y., Fu Y.N., Chawla N. Scripta Mater. 2012;67:629–32.

    Article  Google Scholar 

  39. Meng X.B., Lu Q., Zhang X.L., Li J.G., Chen Z.Q., Wang Y.H., et al. Acta Mater. 2012;60:3965-75.

    Article  Google Scholar 

  40. Sun D.Y., Mendelev M.I., Becker C.A., Kudin K., Haxhimali T., Asta M., Hoyt J.J., Karma A., Srolovitz D.J. Phys. Rev. B 2006;73:024116-1–024116-12.

    Google Scholar 

  41. Qin R.S., Bhadeshia H.K.D.H. Acta Mater. 2009;57:3382-90.

    Article  Google Scholar 

  42. Böttger B., Eiken J., Steinbach I. Acta Mater. 2006;54:2697-2704.

    Article  Google Scholar 

  43. Eiken J. Int. J. Cast Met. Res. 2009;22:86-89.

    Article  Google Scholar 

  44. Eiken J. A Phase-Field Model for Technical Alloy Solidification. Germany: Shaker Verlag GmbH; 2010.

    Google Scholar 

  45. Wang M.Y., Williams J.J., Jiang L., De Carlo F., Jing T., Chawla N. Metall. Microstruct. Anal. 2012;1:7-13.

    Article  Google Scholar 

  46. Miller W.A., Chadwick G.A. Proc. R. Soc. Lond. Ser. A 1969;312:257-76.

    Article  Google Scholar 

  47. Rowenhorst D.J., Voorhees P.W. Metall. Mater. Trans. A 2005;36:2127-35.

    Article  Google Scholar 

  48. Gonzales F., Rappaz M. Metall. Mater. Trans. A 2006;37:2797-2806.

    Article  Google Scholar 

  49. Rhême M., Gonzales F., Rappaz M. Scripta Mater. 2008;59:440-43.

    Article  Google Scholar 

  50. Mariaux A., Rappaz M. Acta Mater. 2010;59:927-933.

    Article  Google Scholar 

  51. Rappaz M., Friedli J., Mariaux A., Salgado-Ordorica M. Scripta Mater. 2010;62:904-909.

    Article  Google Scholar 

  52. Singer H.M, Bilgram J.H. Europhys. Lett. 2004;68:240-46.

    Article  Google Scholar 

  53. Stalder I., Bilgram J.H. Europhys. Lett. 2001;56:829-35.

    Article  Google Scholar 

  54. Bisang U., Bilgram J.H. Phys. Rev. Lett. 1995;75:3898-901.

    Article  Google Scholar 

Download references

Acknowledgments

MYW and TJ acknowledge financial support from the National Science Foundation of China, under Grant No. 51175292, Doctoral Fund of Ministry of Education of China, under Grant No. 20090002110031, and National Science and Technology Major Project of China, under Grant No. 2011ZX04014-052. MYW also gratefully acknowledges the use of X-ray synchrotron beam line BL13W1 at the Shanghai Synchrotron Radiation Facility (SSRF) and the Chinese Scholarship Council for financial support during his stay at ASU.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mingyue Wang or Nikhilesh Chawla.

Additional information

Manuscript submitted October 1, 2013.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, M., Xu, Y., Zheng, Q. et al. Dendritic Growth in Mg-Based Alloys: Phase-Field Simulations and Experimental Verification by X-ray Synchrotron Tomography. Metall Mater Trans A 45, 2562–2574 (2014). https://doi.org/10.1007/s11661-014-2200-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-014-2200-x

Keywords

Navigation