Skip to main content
Log in

Interface Thermal Conductance Between Metal Films and Copper

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Transient thermo-reflectance measurements were made on metals films deposited on Cu film. The Cu film was deposited on Si (001) and sapphire (0001) substrates. The metal films that were deposited include Al, Au, Sn, Zn, and In. The results were modeled using one-dimensional heat equation to determine thermal conductance of interfaces between the metal film and Cu (film/Cu) and Cu and Si (Cu/Si), or Cu and sapphire (Cu/sapphire) in each sample. The results were used to determine the importance of microstructural parameters such as surface roughness, lattice mismatch, solid solubility, and surface energy of the metal film on Cu. The experimental values of interface thermal conductance, although smaller in magnitude, were interpreted in terms of the predicted values by diffuse mismatch model after including the effect of the microstructural parameters. In particular, interface roughness, lattice mismatch, solid solubility, and wettability were found to be important parameters as these are responsible for good atomic level contact between the metal film and Cu.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. C. Deppisch, T. Fitzgerald, A. Raman, F. Hua, C. Zhang, P. Liu, and M. Miller, JOM, 2006, vol. 58, pp. 67-74.

    Article  Google Scholar 

  2. A. Permal, T. Nadarajah, D. Kandasamy, M. Devarajan, and C.K. Lim: IEEE 2nd International Conference on Photonics (ICP 2011), Malaysia; IEEE, Piscataway, NJ, 2011. 5 pp.

  3. R. Prasher, Proceedings of the IEEE, 2006, vol. 94, pp. 1571-74.

    Article  Google Scholar 

  4. P.P.S.S. Abadi, C.-K. Leong, and D.D.L. Chung: J. Electron. Mater., 2009, vol. 38, pp. 175–92.

  5. Y. Xu, R. Kato, and M. Goto: J. Appl. Phys., 2010, vol. 108, pp. 104317-1–104317-6.

  6. K. Jagannadham, Metall. Mater. Trans. B, 2012, vol. 43B, pp. 316-24.

    Article  Google Scholar 

  7. K. Jagannadham: J. Electron. Mater., 2011, vol. 40, pp. 25-34.

    Article  Google Scholar 

  8. G. D. Mahan and M. Bartkowiak, Appl. Phys. Lett. 1999, vol. 74, pp. 953-54.

    Article  Google Scholar 

  9. B.C. Gundrum, D.G. Cahill, and R.S. Averback: Phys. Rev. B., 2005, vol. 72, pp. 245426-1–245426-5.

  10. S.S. Badoni and J. Rhee: 11th International Symposium on Advanced Packaging Materials: Processes, Properties, and Interfaces (IEEE Cat. No. 06TH8875), IEEE, Piscataway, NJ, 2006, 1 pp.

  11. K. Kalkundri, F. Andros, and B. Sammakiaf: TMS 2010, 139th Annual Meeting & Exhibition. Supplemental Proceedings: General Paper Selections, Minerals, Metals & Materials Society, Warrendale, PA, 2010, vol. 3, pp. 17–26.

  12. J.P. Gwinn, M. Saini, and R.L. Webb, ITherm 2002: Eighth Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (Cat. No.02CH37258), IEEE, Piscataway, NJ, 2002, pp. 644–50,

  13. V. O. Turin and A. A. Balandin, Electron. Lett., 2004, vol. 40, pp. 81-83.

    Article  Google Scholar 

  14. D.P.H. Hasselman, K.Y. Donaldson, J.R. Thomas Jr., and J.J. Brennan: J. Am. Ceram. Soc., 1996, vol. 79, pp. 742–48.

  15. D. P. H. Hasselman, J Am. Ceram. Soc., 2002, vol. 85, pp. 1643-45.

    Article  Google Scholar 

  16. H. Bhatt, K.Y. Donaldson, D.P. Hasselman, and R.T. Bhatt: J. Am. Ceram. Soc., 1992, vol. 75, pp. 334–40.

  17. L. C. Davis and B. E. Artz, J. Appl. Phys., 1995, vol. 77, pp. 4954-61.

    Article  Google Scholar 

  18. J. G. Bai, Z. Z. Zhang, G.-Q. Lu, and D. P. H. Hasselman, Int. J. Thermophys., 2005, vol. 26, pp. 1607-15.

    Article  Google Scholar 

  19. D.G. Cahill: Rev. Sci. Instrum., 2004, vol. 75, pp. 5119-1–5119-1-9.

  20. B. M. Clemens, G. L. Eesley, and C. A. Paddock, Phys. Rev. 1988, vol. 37, pp. 1085-96.

    Article  Google Scholar 

  21. M.A. Panzer, G. Zhnag, D. Mann, X. Hu, E. Pop, H. Dai, and K.E. Goodson: J. Heat Trans., 2008, vol. 130, pp. 052401-1–052401-9.

  22. H. Zheng and K. Jagannadham, AIP Adv., 2013, vol. 3, pp. 032111-1–032111-12.

    Google Scholar 

  23. E. T. Swartz and R. O. Pohl, Reviews of Modern Physics, 1989, vol.61, pp. 605-68.

    Article  Google Scholar 

  24. M. Kazan, A. Bruyant, P. Royer, and P. Masri, Surf. Sci. Rep., 2010, vol. 65, pp. 111-27.

    Article  Google Scholar 

  25. B.N.J. Persson, B. Lorenz, and A.I. Volokitin, Eur. Phys. J. E, 2010, vol. 31, pp. 3–24.

    Article  Google Scholar 

  26. P.E. Hopkins, L.M. Phinney, J.R. Serrano, and T.E. Beechem: Phys. Rev. B, 2010, vol. 82, pp. 085307-1–085307-8.

  27. Thermal conductivity and Debye Temperature, http://hyperphysics.phy-astr.gsu.edu/HBASE/tables.

  28. K. Jagannadham, E. A. Berkman and N. Elmasry, J. Vac. Sci. Technol. A, 2008, vol. 26, pp. 375-79.

    Article  Google Scholar 

  29. L. Pauling, J. Am. Chem. Soc., 1947, vol. 69, pp. 542-55.

    Article  Google Scholar 

  30. Metals Handbook, 8th Ed., vol. 8, American Society for Metals, Metals Park, OH, 1973.

    Google Scholar 

  31. C.R. Brooks: Heat Treatment, Structure and Properties of Nonferrous Alloys, ASM, Metals Park, OH, ch. 8, p. 275, 1984.

    Google Scholar 

  32. L. Vitos, A.V. Ruban, H.L. Skriver, and J. Kolla′r, Surf. Sci., 1998, vol. 411, pp. 186-202.

    Article  Google Scholar 

  33. D. A. Dicke and B. A. Green JR., Phys. Rev., 1967, vol. 153, pp. 800-01.

    Article  Google Scholar 

  34. D. L. Martin, Phys. Rev. B, 1973, vol. 8, pp. 5357-60.

    Article  Google Scholar 

  35. C.A. Bryant and P.H. Keesom: Phys. Rev., 1961, vol. 123, pp. 491–99.

  36. T.B. Massalski, U. Mizutani, and S. Noguch: Proc. R. Soc. A, 1975, vol. 343, pp. 363–74.

  37. Fermi Energies and Solid Properties, http://hyperphysics.phy-astr.gsu.edu/HBASE/tables.

  38. P. M. Norris and P. E. Hopkins, J. Heat Transf., 2009, vol. 131, pp. 043207-1–043207-11.

    Article  Google Scholar 

Download references

Acknowledgments

This research is supported by the National Science Foundation Grant CMMI #1049751.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Jagannadham.

Additional information

Manuscript submitted April 22, 2013.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zheng, H., Jagannadham, K. Interface Thermal Conductance Between Metal Films and Copper. Metall Mater Trans A 45, 2480–2486 (2014). https://doi.org/10.1007/s11661-014-2194-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-014-2194-4

Keywords

Navigation