Skip to main content
Log in

Magnetic Field-Induced Precipitation Behaviors of Alloy Carbides M2C, M3C, and M6C in a Molybdenum-Containing Steel

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The effect of a 12-T high magnetic field on alloy carbide precipitation in an Fe-C-Mo alloy during tempering at an intermediate temperature was investigated. Thin foils and carbon extraction replicas of the treated specimens were examined by transmission electron microscopy (TEM). The results show that the applied high field effectively promoted the precipitation of (Fe,Mo)6C alloy carbide. The concentration of Fe atom in Fe6−x Mo x C carbide is increased whereas that of Mo atom decreased when the high magnetic field was applied. However, the high magnetic field almost had no detectable influence on the atom concentration in (Fe,Mo)2C and (Fe,Mo)3C carbides. First principle calculations have been performed to calculate the magnetic moment per iron atom of the carbides to explore the origin of the effect of the magnetic field. The influence of the high magnetic field on the precipitation behaviors of alloy carbides was closely related to the magnetic moment of (Fe,Mo)2C, (Fe,Mo)3C, and (Fe,Mo)6C. The magnetic field promotes the formation of the carbides with high total magnetic moment. The effect of the high magnetic field on the substitutional solute atom (Fe and Mo) concentration change in the three alloy carbides was attributed to their magnetization differences per Fe atom.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. H.D. Joo, S.U. Kim, N.S. Shin and Y.M. Koo: Mater. Lett., 2000, vol. 43, pp. 225-29.

    Article  Google Scholar 

  2. Z.X. Xia, C. Zhang, H. Lan, Z.Q. Liu and Z.G. Yang: Mater. Lett., 2011, vol. 65, pp. 937-39.

    Article  Google Scholar 

  3. R. Smoluchowski and R.W. Turner: J. Appl. Phys., 1949, vol. 20, pp. 745-46.

    Article  Google Scholar 

  4. V. Sadovskii, N.M. Rodigin, L.V. Smirnov, G.M. Filonchik and I.G. Fakidov: Fiz. Met. Metalloved., 1961, vol.12, pp. 302-04.

    Google Scholar 

  5. T. Kakeshita, K. Shimizu, S. Funada and M. Date: Acta. Metall., 1985, vol. 33, pp. 1381-89.

    Article  Google Scholar 

  6. T. Kakeshita, K. Shimizu, T. Maki, I. Tamura, S. Kijima and M. Date: Scripta. Metall., 1985, vol. 19, pp. 973-76.

    Article  Google Scholar 

  7. D. San Martín, K.W.D. Aarts, P.E.J. Rivera-Díaz-del-Castillo, N.H. van Dijk, E. Brück, and S. van der Zwaag: J. Magn. Magn. Mater., 2008, vol. 320, pp. 1722–28.

  8. D. San Martín, N.H. van Dijk, E. Jiménez-Melero, E. Kampert, and U. Zeitler: Mater. Sci. Eng. A., 2010, vol. 527, pp. 5241–45.

  9. H. Ohtsuka. Mater. Sci. Eng. A., 2006, vol. 438–440, pp. 136–39.

  10. M. Enomoto, H. Guo, Y. Tazuke, Y.R. Abe and M. Shimotomai: Metall. Mater. Trans. A., 2001, vol. 32A, pp. 445–53.

    Article  Google Scholar 

  11. M. Shimotomai: Mater. Trans. JIM., 2003, vol.44, pp. 2524-28.

    Article  Google Scholar 

  12. X.X. Zhang, Y.D. Zhang, M.L. Gong, C. Esling, X. Zhao and L. Zuo: J. Magn. Magn. Mater., 2012, vol. 324, pp. 4184-88.

    Article  Google Scholar 

  13. D.A. Molodov and P.J. Konijnenberg: Scripta. Mater., 2006, vol. 54, pp. 977-81.

    Article  Google Scholar 

  14. Y.D. Zhang, N. Gey, C.S. He, X. Zhao, L. Zuo and C. Esling: Acta. Mater., 2004, vol. 52, pp. 3467-74.

    Article  Google Scholar 

  15. T. Gladman: The Physical Metallurgy of Microalloyed Steels, Institute of Materials, London; 1997.

    Google Scholar 

  16. Y.D. Zhang, X. Zhao, N. Bozzolo, C. He, L. Zuo and C. Esling: ISIJ. Int., 2005, vol. 45, pp. 913-17.

    Article  Google Scholar 

  17. K. Watanabe, S. Awaji, M. Motokawa, Y. Mikami, J. Sakuraba and K. Watazawa: Jpn. J. Appl. Phys., 1998, vol. 37, pp. 1148-51.

    Article  Google Scholar 

  18. Digital Micrograph, http://www.microscopy.cen.dtu.dk/computing/DigitalMicrograph.

  19. P. Blaha, K. Schwarz, G.K.H. Madsen, D. Kvasnicka, and J. Luitz: WIEN2K, An Augmented Plane Wave + Local Orbital Program For Calculating Crystal Properties, Vienna University of Technology, Austria, 2001.

    Google Scholar 

  20. J.P. Perdew, S. Burke and M. Ernzerhof: Phys. Rev. Let., 1996, vol. 77, pp. 3865-68.

    Article  Google Scholar 

  21. P.E. Blöchl, O. Jepsen and O.K. Andersen: Phys. Rev. B., 1994, vol. 49, pp. 16223-33.

    Article  Google Scholar 

  22. T.P. Hou, Y. Li and K.M. Wu: J. Alloys. Compd., 2012, vol. 527, pp. 240-46.

    Article  Google Scholar 

  23. Z.N. Zhou and K.M. Wu: Scripta. Mater., 2009, vol.61, pp. 670-73.

    Article  Google Scholar 

  24. D.A. Porter and K. Easterling: Phase transformations and alloys, 2ed Ed., Chapman and Hall, London,1992.

    Book  Google Scholar 

  25. K.H. Jack: J. Iron Steel. Inst., 1951, vol. 169, pp. 26-36.

    Google Scholar 

  26. Y. Hirotsu and S. Nagakura: Trans. Jpn. Inst. Met., 1974, vol. 15, pp. 129-34.

    Article  Google Scholar 

  27. D. Dyson and K.W. Andrews: J. Iron Steel. Inst., 1964, vol. 202, pp. 325-29.

    Google Scholar 

  28. P. Ettmeyer and R. Suchentrunk: Monatsh. Chem., 1970, vol. 101(4), pp. 1098–103.

  29. K. Kuo: Acta. Metall., 1953, vol.1, pp. 301-04.

    Article  Google Scholar 

  30. T. Takei: Kinzoku. no. Kenkyu., 1932, vol.9, pp. 97-124.

    Google Scholar 

  31. H. Wada: Metall. Trans. A., 1986, vol. 17A, pp. 391-98.

    Article  Google Scholar 

  32. R.M. Bozoroth: Ferromagnetism, Van Nostrand, New Jersey, 1951.

  33. D. Fruchart, R. Fruchart, Ph. L’Héritier, K. Kanematsu, R. Madar, S. Misawa, Y. Nakamura, P.J. Webster, and K.R.A. Ziebeck: Magnetic Properties of Metals, Springer, Berlin, 1988.

  34. H.I. Faraoun, Y.D. Zhang, C. Esling, and H. Aourag: J. Appl. Phys., 2006, vol. 99, pp. 093508-1–093508-8.

  35. J. Crangle: The Magnetic Properties of Solids, Edward Arnold Ltd, London, 1977.

  36. K.O.E. Henriksson, N. Sandberg and J. Wallenius: Appl. Phys. Lett., 2008, vol. 93, pp. 1-3.

    Article  Google Scholar 

  37. E. Du Trémolet de Lacheisserie: Magnétisme-Fondements, Grenoble Sciences, Grenoble, 2000.

Download references

Acknowledgments

The authors express their thanks to Professor M. Enomoto, Ibaraki University, Japan, for providing the specimens. Thanks are also expressed to the Electromagnetic Process Lab of the Key Laboratory of the Ministry of Education in Northeastern University for their help in magnetic field heat treatment and the Center for Electron Microscopy Wuhan University. The authors are grateful to the financial support for this work from the State Ministry of Education (Grant No. NCET-05-0680), Natural Science Foundation of Hubei Province (Grant No. 2006ABB037), and International Science and Technology Cooperation Program of China (Grant No. S2012ZR0211).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. M. Wu.

Additional information

Manuscript submitted January 29, 2013.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hou, T.P., Li, Y., Zhang, Y.D. et al. Magnetic Field-Induced Precipitation Behaviors of Alloy Carbides M2C, M3C, and M6C in a Molybdenum-Containing Steel. Metall Mater Trans A 45, 2553–2561 (2014). https://doi.org/10.1007/s11661-014-2188-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-014-2188-2

Keywords

Navigation